
Efficiently deciding equivalence for standard

primitives and phases⋆

Véronique Cortier1, Antoine Dallon1,2,3, and Stéphanie Delaune3

1 LORIA, CNRS, France
2 LSV, CNRS & ENS Paris-Saclay, France

3 Univ Rennes, CNRS, IRISA, France

Abstract. Privacy properties like anonymity or untraceability are now
well identified, desirable goals of many security protocols. Such properties
are typically stated as equivalence properties. However, automatically
checking equivalence of protocols often yields efficiency issues.
We propose an efficient algorithm, based on graph planning and SAT-
solving. It can decide equivalence for a bounded number of sessions, for
protocols with standard cryptographic primitives and phases (often nec-
essary to specify privacy properties), provided protocols are well-typed,
that is encrypted messages cannot be confused. The resulting imple-
mentation, SAT-Equiv, demonstrates a significant speed-up w.r.t. other
existing tools that decide equivalence, covering typically more than 100
sessions. Combined with a previous result, SAT-Equiv can now be used to
prove security, for some protocols, for an unbounded number of sessions.

1 Introduction

Security protocols are notoriously difficult to design. A common good practice
is to formally analyse protocols using symbolic techniques, in order to spot flaws
possibly before their deployment (e.g. TLS 1.3 [20, 4], an avionic protocol [5]).
These symbolic techniques are mature for reachability properties like confiden-
tiality or authentication. More recently, this approach has been extended to pri-
vacy properties, such as vote secrecy, anonymity, untraceability, or unlinkability.
These properties are expressed through equivalences. For example, in the case of
biometric passports, an attacker should not be able to distinguish whether she
is in contact with Alice’s passport or Bob’s passport.

Recently, a new tool, SAT-Equiv [16], has been proposed to decide such
equivalence properties for security protocols, for a bounded number of sessions.
It is based on a standard model-checking approach, namely graph planning [7,
23] and SAT-solving. Intuitively, protocols executions are over-approximated as a

⋆ The research leading to these results has received funding from the European Re-
search Council under the European Union’s horizon 2020 research and innovation
program (ERC grant agreement n◦ 714955-POPSTAR and n◦ 645865-SPOOC), as
well as from the French National Research Agency (ANR) under the project TECAP,
and the DGA.

graph planning problem, which allows to consider several possible interleavings
in parallel, allowing the analysis of dozen of sessions of a protocol in a few
seconds. However, this result is limited to a very small set of primitives, namely
symmetric encryption and concatenation.

Our contributions. Building upon this novel approach, we enrich SAT-Equiv in
order to cover protocols using asymmetric primitives and/or phases. As for the
original SAT-Equiv, we assume a non confusion property: encrypted messages
should not be confused, a condition automatically checked by our tool and which
can be enforced e.g. through appropriate labelling.

First, we extend SAT-Equiv to cover all standard primitives: symmetric
and asymmetric encryption, signatures, and hashes. Since graph planning is a
bounded model-checking technique, SAT-Equiv relies on a small model prop-
erty, that bounds the size of messages. More precisely, [12] guarantees that if
there is an attack, then there is a well-typed attack, where messages follow a fix
format. This result has been recently extended to standard primitives [14]. The
straightforward extension of SAT-Equiv to standard primitives however yields
severe efficiency issues. Indeed, unlike the symmetric encryption case, checking
whether two sequences of messages are equivalent (i.e. in static equivalence) may
require complex tests where the attacker construct messages (that is, hash or
asymmetrically encrypt messages). We therefore provide a precise characteri-
sation of the set of tests that need to be considered when checking for static
equivalence. This characterisation is of independent interest and could be used
in other contexts. We also extend SAT-Equiv to consider protocols with phases,
which are useful to model game-based properties.

Our extension of SAT-Equiv now provably terminates. In [16], termination
can be guaranteed by checking that any state of the planning graph is indeed
reachable, which requires to query a SAT-solver at each step. While this provides
termination in theory, this yields a non practical algorithm and has not been
implemented. Instead, we exhibit a bound on the maximal length of the smallest
attack (bounding the attacker steps as well). It is therefore sufficient to stop the
construction of the graph planning once this bound has been reached, enforcing
termination for free (no computation overhead).

Finally, we have considerably revisited and improved the original implemen-
tation of SAT-Equiv. This significant speedup now allows for security proofs for
an unbounded number of sessions. Indeed, [13] shows decidability of equivalence,
for an unbounded number of sessions, for protocols with an acyclic dependency
graph. The notion of dependency graph is introduced in [13] and intuitively cap-
tures how the input/output actions of the protocol may use messages from other
steps of the protocol. As a corollary, [13] induces a bound on the number of
sessions that needs to be considered for an attack, which depends on the size
and structure of the graph. This bound can be rather large (50 to 100 sessions,
even on small examples) but SAT-Equiv is now able to reach such bounds.

These novelties are implemented in an extension of SAT-Equiv and compared
with the other tools of the literature, namely Spec [25], Akiss [8] and the very
recent DeepSec [11] tool. Our experiments show that SAT-Equiv is much faster

2

on all the examples, allowing to reach typically more than 100 sessions. As an
application, we consider two protocols, Denning-Sacco and Needham-Schroeder
symmetric keys, shown to have acyclic dependency graphs in [13]. Considering
the necessary number of sessions as induced by [13], we establish trace equiva-
lence for these two protocols, for an unbounded number of sessions.

Due to lack of space, the reader is referred to the companion technical re-
port [17] for the missing proofs and additional details.

Related work. There are two main families of tools to analyse equivalence proper-
ties on security protocols. Some tools prove equivalence for an arbitrary number
of sessions, that is, no matter how often a protocol is used. The main tools in this
category are ProVerif [6], Tamarin [24], Maude-NPA [22], Type-Eq [18]. Maude-
NPA often suffers from termination issues when used for equivalence properties.
Type-Eq [18, 19] is a sound (but incomplete) type-checker for equivalence prop-
erties that has good performance. It requires that protocols have a similar struc-
ture. ProVerif and Tamarin work well in practice. They actually prove a stronger
notion of equivalence, diff-equivalence, that also requires that the two considered
protocols have a very similar structure. Moreover, equivalence properties are un-
decidable in general for an unbounded number of sessions. Therefore, ProVerif
may not terminate and Tamarin may need some user guidance.

A second approach consists in deciding equivalence, for a bounded number
of sessions. Spec [25] is one of the first tool that decides equivalence of security
protocols but it does not scale well when the number of sessions grows (it can
typically handle up to three sessions for small protocols). DeepSec [11] is a very
recent tool that builds upon Akiss [8] and Apte [9]. All these tools analyse sym-
bolic executions and typically have to consider all possible interleavings between
the roles of the protocol, which often raises efficiency issues.

2 Model

Protocols are modeled through a process algebra, in the spirit of the applied-pi
calculus [1]. We consider here a model similar to the ones used e.g. in [16, 14].

2.1 Term algebra

As usual, messages are modeled by terms. Private data are represented through
an infinite set N of names used to model e.g. keys or nonces. We consider an infi-
nite set C0 of constants to represent public data such as agent names or attacker’s
nonces or keys. We consider also two sets of variables X and W . Variables in X
model arbitrary data expected by the protocol, while variables in W are used
to store messages learnt by the attacker. A data is either a constant, a variable,
or a name. Cryptograhic primitives are represented by function symbols. We
consider the signature Σ parameterised by n ≥ 2:

– Σc = {senc, aenc, hash, pub, sign, vk, ok} ∪ {〈 〉k | 2 ≤ k ≤ n};

3

– Σd = {sdec, adec, getmsg} ∪ {projkj | 2 ≤ k ≤ n and 1 ≤ j ≤ k}; and

– Σ = Σc ∪Σd ∪ {check}.

The symbols senc, aenc, sdec, and adec of arity 2 are used to model resp. sym-
metric and asymmetric encryption. We also consider signature sign and hash
function hash. Concatenation of messages is modeled through tuple operators
together with their projection functions. For example, 〈m1,m2,m3〉3 represents
the concatenation of the three messages m1, m2, and m3. It is syntactically dif-
ferent from the nested pairs 〈m1, 〈m2,m3〉2〉2. These two representations corre-
spond to different implementation choices. We distinguish between constructors
in Σc and destructors in Σd. The symbol check of arity 2, which corresponds to
the verification of a signature, is neither a destructor nor a constructor. The set
of terms built from a signature F and a set of data D is denoted T (Σ,D). Given
a term u, we denote St(u) the set of its subterms, vars(u) the set of its variables,
and root(u) its root symbol. A term is ground if it contains no variable. The
application of a substitution σ to a term u is written uσ. We denote dom(σ) its
domain and img(σ) its image. Two terms u1 and u2 are unifiable when there
exists a substitution σ such that u1σ = u2σ.

We consider two sorts : atom and bitstring. The sort atom represents atomic
data like nonces or keys while bitstring models arbitrary messages. Names in N
and constants in C0 have sort atom. Any f ∈ Σc comes with its sorted arity:

〈 〉k : bitstring × · · · × bitstring → bitstring

senc : bitstring × atom → bitstring

aenc : bitstring × bitstring → bitstring

sign : bitstring × atom → bitstring

ok : → bitstring

pub : atom → bitstring

vk : atom → bitstring

hash : bitstring → bitstring

Given D ⊆ C0 ⊎ X , the set T0(Σc, D) is the set of terms t in T (Σc, D) such
that (i) for any term pub(u) (resp. vk(u)) in St(t), u is of sort atom; (ii) for any
aenc(u, v) ∈ St(t), v = pub(v′) for some v′. Terms in T0(Σc,N ⊎ C0) are called
messages. Intuitively, messages are terms with atomic keys.

The properties of the cryptographic primitives are reflected through the fol-
lowing convergent rewriting rules.

sdec(senc(x, y), y) → x adec(aenc(x, pub(y)), y) → x

getmsg(sign(x, y)) → x check(sign(x, y), vk(y)) → ok

projkj (〈x1, . . . , xk〉k) → xj with 2 ≤ k ≤ n and 1 ≤ j ≤ k

A term u can be rewritten into v if there is a position p in u, and a rewriting
rule g(t1, ..., tn) → t such that u|p = g(t1, . . . , tn)θ for some substitution θ, and
v = u[tθ]p, i.e. u in which the subterm at position p has been replaced by tθ.
Moreover, we assume that t1θ, . . . , tnθ as well as tθ are messages, in particular
they do not contain destructor symbols. As usual, we denote →∗ the reflexive-
transitive closure of →, and u↓ the normal form of a term u.

An attacker builds her own messages by applying public function symbols to
terms she already knows and which are available through variables in W . For-
mally, a computation done by the attacker is a recipe, i.e. a term in T (Σ,W ⊎ C0).

4

2.2 Process algebra

We consider processes that may receive and send messages. We assume that each
process communicates on a dedicated public channel. In practice, IP addresses
and sessions identifiers are typically used to desambiguate which message is
addressed to whom and for which session. Of course, these channels may be
freely manipulated by the attacker. Since we consider equivalence properties,
distinct (public) channels provide more abilities for the adversary to distinguish
between protocols. Formally, given a set Ch of channels, we consider the fragment
of simple processes without replication built on basic processes as defined e.g.
in [10].

Definition 1. A basic processes is defined as follows:

P,Q := 0 | in(c, u1).P | out(c, u2).P | i:P

with u1, u2 ∈ T0(Σc, C0⊎N ⊎X), c ∈ Ch, and increasing phase numbers. A simple
process is a multiset of basic processes on pairwise distinct channels. A protocol
is a simple process such that all its variables are in the scope of an input.

The process 0 does nothing and we often omit it. The process “ in(c, u1).P ”
expects a message m of the form u1 on channel c and then behaves like Pσ
where σ is a substitution such that m = u1σ. Note that checking whether a re-
ceived message has the expected form is done through pattern-matching instead
of explicit tests. The process “out(c, u2).P ” emits u2 on c, and then behaves
like P . Our calculus also has a phase instruction, in the spirit of [6], denoted
i:P . This instruction is useful to model security requirements, for example in
case the attacker interacts with the protocol before being given some secret.

Example 1. As an illustrative example, we consider a simplified version of the
Denning-Sacco protocol which is a key distribution protocol relying on asym-
metric encryption and signature. Informally, the protocol is as follows.

A→ B : aenc(sign(〈A,B,Kab〉, prv(A)), pub(B))

The agents A and B aim at authenticating each other and establishing a fresh
session keyKab. We model this protocol in our formalism through the simple pro-
cess PDS = {PA;PB} where PA = out(cA, aenc(sign(〈a, b, kab〉3, ska), pub(skb))).0
and PB = in(cB, aenc(sign(〈a, b, x〉3, ska), pub(skb))).0 where ska, skb, and kab
are names, a and b are constants, and x is a variable.

The operational semantics of a process is defined using a relation over con-
figurations. A configuration is a tuple (P ;φ;σ; i) with i ∈ N and such that:

– P is a multiset of processes (not necessarily ground);
– φ = {w1 ⊲ m1, . . . ,wn ⊲ mn} is a frame, i.e. a substitution where w1, . . . ,wn

are variables in W , and m1, . . . ,mn are messages;
– σ is a substitution such that fv (P) ⊆ dom(σ), and img(σ) are messages.

A configuration is said to be initial when σ = ∅. Intuitively, P represents the
processes that still remain to be executed; φ represents the sequence of messages

5

In (i:in(c, u).P ∪ P ;φ;σ; i)
in(c,R)
−−−−→ (i:P ∪ P ;φ;σ ⊎ σ0; i) where R is a recipe

such that Rφ↓ is a message, and Rφ↓ = (uσ)σ0 for σ0 with dom(σ0) = vars(uσ).

Out (i:out(c, u).P ∪ P ;φ;σ; i)
out(c,w)
−−−−−→ (i:P ∪ P ;φ ∪ {w ⊲ uσ};σ; i)

with w a fresh variable from W, and uσ is a message.

Move (P ;φ;σ; i)
phase i′

−−−−→ (P ;φ;σ; i′) with i′ > i.

Phase (i′:i′′:P ∪ P ;φ;σ; i)
τ

−−→ (i′′:P ∪ P ;φ;σ; i)

Fig. 1. Semantics for processes

that have been learnt so far by the attacker, and σ stores the value of the variables
that have already been instantiated. We write P instead of 0:P and P ⊎P instead
of {P} ⊎ P . Given a protocol P , we also often write P instead of (P ; ∅; ∅; 0).

The operational semantics is induced by the relation
α
−→ over configurations

defined in Figure 1. For example, the In rule defines how messages can be input
on a (public) channel: the adversary may send any message, provided she can
construct it through a recipe R applied on her previous knowledge φ. Note that

only messages can be received (and sent). The relation
tr
−→ between configurations

(where tr is a possibly empty sequence of actions) is defined in the usual way.
Given a configuration K, we write:

trace(K) = {(tr, φ) | K
tr
−→ (P ′;φ;σ; i) for some configuration (P ′;φ;σ; i)}.

Example 2. Continuing Example 1, let KDS = ({PA;PB;PB′};φ0; ∅; 0) where PB′

models an additional session of the role B obtained by simply renaming cB
and x with c′B and x′. The frame φ0 = {wa ⊲ vk(ska),wb ⊲ pub(skb)} models
the fact that the attacker initially knows the public key of b and the verifica-
tion key of a. We consider a simple scenario without dishonest participant. The
trace tr0 = out(cA,w1).in(cB,w1).in(c

′
B ,w1) is executable from KDS, and yields

φ = φ0 ⊎ {w1 ⊲ aenc(sign(〈a, b, kab〉3, ska), pub(skb))}, i.e. (tr0, φ) ∈ trace(KDS).

2.3 Type-compliance

We present here our main assumption on protocols. Intuitively, we assume that
ciphertexts cannot be confused, and we rely for this on a notion of typing system.

Definition 2. A typing system is a pair (Tinit, δ) where Tinit is a set of elements
called initial types, and δ is a function mapping data in C0 ⊎N ⊎ X to types τ :

τ, τ1, τ2 = τ0 | f(τ1, . . . , τn) with f ∈ Σc and τ0 ∈ Tinit

Then, δ is extended to constructor terms as follows:

δ(f(t1, . . . , tn)) = f(δ(t1), . . . , δ(tn)) with f ∈ Σc.

A configuration is type-compliant if two unifiable encrypted subterms have
the same type. We write ESt(t) for the set of encrypted subterms of t, i.e.
ESt(t) = {u ∈ St(t) | u is of the form f(u1, . . . , un) and f 6= 〈 〉i}.

6

Definition 3. An initial configuration K is type-compliant w.r.t. a typing sys-
tem (Tinit, δ) if for every t, t′ ∈ ESt(K) we have that t and t′ unifiable implies
that δ(t) = δ(t′).

Example 3. Continuing our running example, we consider the typing system
generated from TDS = {τa, τb, τk, τsk} of initial types, and the function δDS that
associates the expected type to each constant/name (δDS(a) = τa, δDS(kab) = τk,
etc), and such that δDS(x) = δDS(x

′) = τk. We have that KDS is type-compliant
w.r.t. (TDS, δDS): unifiable encrypted subterms occurring in the configuration
have the same type since δDS(x) = δDS(x

′) = δDS(kab).

Type-compliant protocols have the property that, when looking for attacks, it

is sufficient to consider well-typed execution: K
tr
−→ (P ;φ;σ; i) is well-typed w.r.t.

a typing system (Tinit, δ), if σ is a well-typed substitution, i.e. every variable of
its domain has the same type as its image.

2.4 Trace equivalence

Many privacy properties such as vote-privacy or untraceability are expressed as
trace equivalence [21, 2]. Intuitively, two configurations are trace equivalent if an
attacker cannot tell with which of the two configurations she is interacting. We
first introduce a notion of equivalence (actually, inclusion) between frames.

Definition 4. Two frames φ1 and φ2 are in static inclusion, written φ1 ⊑s φ2,
when dom(φ1) = dom(φ2), and:

– for any recipe R, we have that Rφ1↓ is a message implies that Rφ2↓ is a
message;

– for any recipes R,R′ such that Rφ1↓, R′φ1↓ are messages, we have that:
Rφ1↓ = R′φ1↓ implies Rφ2↓ = R′φ2↓.

Intuitively, φ1 is included in φ2 if any recipe producing a message in φ1 also
produces a message in φ2 and if any equality satisfied in φ1 is also satisfied in φ2.

Example 4. We consider φ1 = φ ⊎ {w2 ⊲ senc(m1, kab),w
′
2 ⊲ senc(m1, kab)}, and

φ2 = φ ⊎ {w2 ⊲ senc(m2, k),w
′
2 ⊲ senc(m2, k

′)} where m1,m2 ∈ C0. We have that
w2φ1↓ = w′

2φ1↓ whereas this equality does not hold in φ2. Hence φ1 6⊑s φ2.

Trace inclusion is the active counterpart of static inclusion. Two configu-
rations are in trace inclusion if, however the attacker behaves, the resulting
sequences of messages observed by the attacker are in static inclusion.

Definition 5. Let K and K′ be two configurations. We have that K ⊑t K′, if for
every (tr, φ) ∈ trace(K), there exists (tr, φ′) ∈ trace(K′) such that φ ⊑s φ

′.

We easily derive a notion of trace equivalence: two configurations K and K′

are trace equivalence, denoted K ≈t K′, if K ⊑t K′ and K′ ⊑t K. This notion of
trace equivalence slightly differs from the one used in e.g. [12] but they actually
coincide on the class of protocols we consider in this paper [8].

7

Example 5. To model secrecy of the key kab, we define strong secrecy of kab by re-
quiring that kab is indistinguishable from a fresh value. Formally, we consider P 1

B

(resp. P 1
B′) obtained by replacing the process 0 with 1:out(cB , senc(m1, x)) (resp.

1:out(c′B, senc(m1, x
′))). On the other side of the equivalence, we consider P 2

B

and P 2
B′ obtained by replacing the process 0 with 1:out(cB, senc(m2, k)) (resp.

1:out(c′B, senc(m2, k
′))) with fresh names k and k′.

K1
DS = ({PA;P

1
B;P

1
B′};φ0) and K2

DS = ({PA;P
2
B ;P

2
B′};φ0).

Then, we can show that K1
DS 6⊑t K2

DS since kab is not strongly secret. An
attacker can replay the message sent by A due to lack of freshness. This is exem-
plified by the trace tr0.out(cB ,w2).out(c

′
B ,w

′
2) and the test given in Example 4.

3 From static inclusion to planning

The overall objective of this paper is to provide a practical algorithm for deciding
trace inclusion (and thus trace equivalence) relying on graph planning and SAT
solving. We start here by explaining how to build a planning problem from two
frames such that the planning problem has a solution if, and only if, the two
corresponding frames are not in static inclusion.

3.1 Planning problems

We first recall the definition of a planning problem, slightly simplified from [15].
Intuitively, a planning system defines a transition system from sets of facts to
sets of facts. New facts may be produced and some old facts may be deleted.

Definition 6. A planning system is tuple 〈Fact, Init,Rule〉 where Fact is a
set of ground formulas called facts, Init0 ⊆ Fact is a set of facts representing
the initial state, and Rule is a set of rules of the form Pre −→ Add;Del where
Pre, Add, Del are finite sets of facts such that Add ∩ Del = ∅, Del ⊆ Pre. We
write Pre −→ Add when Del = ∅.

Given a rule r ∈ Rule of the form Pre −→ Add;Del, we denote Pre(r) =
Pre, Add(r) = Add, and Del(r) = Del. If S ⊆ Fact are such that Pre(r) ⊆ S,

then we say that the rule is applicable in S, denoted S
r
−→ S′, and the state

S′ = (S r Del) ∪ Add is the state resulting from the application of r to S.
We allow some rules to be applied in parallel when no facts are deleted. Given
S ⊆ Fact, and a set of rules {r1, . . . , rk} such that Del(ri) = ∅ and Pre(ri) ⊆ S

for any i ∈ {1, . . . , k}, {r1, . . . , rk} is applicable in S, denoted S
{r1,...,rk}
−−−−−−→ S′,

and the state S′ =
⋃k

i=1 Add(ri) ∪ S is the state resulting from the application
of {r1, . . . , rk} to S.

A planning path from S0 ⊆ Fact to Sn ⊆ Fact is a sequence r1, . . . , rn
made of rules or sets of rules in Rule such that S0

r1−→ S1
r2−→ . . . Sn−1

rn−→ Sn

for some states S1, . . . , Sn−1 ⊆ Fact. A planning problem for a system Θ =
〈Fact, Init,Rule〉 is a pair Π = 〈Θ,Sf 〉 where Sf ⊆ F represents the target

8

facts. A solution to Π = 〈Θ,Sf 〉, called a plan, is a planning path from Init to
a state Sn such that Sf ⊆ Sn.

A transition S
{r1,...,rk}
−−−−−−→ S′ can be mimicked by S

r1−→ S1
r2−→ . . .

rk−→ S′, thus
the possibility of applying set of rules in a single step does not change the set of
reachable states from a given state S. However, this allows us to consider plans
of smaller length and will be useful later on to derive a tight bound and ensure
the termination of our algorithm.

In this section, we explain the translation of static inclusion into a planning
problem. We consider an (infinite) set Fact0 of facts that represent the attacker’s
knowledge, i.e. formulas of the form att(uP , uQ) where uP and uQ are messages,
plus a special symbol bad. Intuitively, att(uP , uQ) means that the attacker knows
uP in the “left” frame, while she knows uQ in the “right” one.

3.2 Attacker analysis rules

Following [16], we first describe the planning rules that correspond to the analysis
part of the attacker behaviours. We start by describing a set of abstract rules
RAna that will be instantiated later on, yielding a (concrete) planning system.

att(〈x1, . . . , xk〉k, 〈y1, . . . , yk〉k) −→ att(xi, yi) with i ≤ k

att(senc(x1, x2), senc(y1, y2)), att(x2, y2) −→ att(x1, y1)
att(aenc(x1, pub(x2)), aenc(y1, pub(y2))), att(x2, y2) −→ att(x1, y1)

att(sign(x1, x2), sign(y1, y2)) −→ att(x1, y1)

These rules correspond to the attacker’s ability to project, decrypt, and re-
trieve messages from their signature. There is no Del since the attacker never for-
gets. Given a rule r ∈ RAna, we explain how to compute its concretization denoted
Concrete(r). Formally, we have that Concrete(r) = Concrete+(r) ∪ Concrete−(r).

Concrete+(r). The positive concretizations of r consist of instantiating r such
that the resulting terms are messages. More formally, we have:

Concrete+(r) = {rσ | σ substitution such that rσ only involve messages.}

Concrete−(r). We say that a sequence of ground facts att(u1, v1), . . . , att(uk, vk)
left-unifies with a sequence att(u′1, v

′
1), . . . , att(u

′
k, v

′
k) if there exists σ such that

u′1σ = u1, . . . , u
′
kσ = uk (and symmetrically for right-unification). Given an ab-

stract attacker rule r = Pre −→ Add, we define Concrete−(r) as the set containing
f1, . . . , fk −→ bad for any sequence of facts f1, . . . , fk ∈ Fact0 such that f1, . . . , fk
left-unifies with Pre, whereas f1, . . . , fk does not right-unify with Pre.

Example 6. The negative concretizations of the abstract rule corresponding to
asymmetric decryption are all the concrete rules of the form

att(aenc(u1, pub(u2)), v), att(u2, v
′) −→ bad

where u1, u2, v, v
′, aenc(u1, pub(u2)) are messages, whereas adec(v, v′)↓ is not.

9

3.3 Static inclusion

According to Definition 4, to break static inclusion, an attacker may build new
terms (using both analysis and synthesis rules) but also check for equalities and
computation failures. To encode static inclusion using planning in an efficient
way, we need to strictly control the terms that an attacker has to synthetise.

We say that R is destructor-only if R ∈ T (Σd, C0 ∪W). It is simple if there
exists destructor-only recipes R1, . . . , Rk, and a context C made of constructors
such that R = C[R1, . . . , Rk].

Definition 7. Let φ, ψ be such that dom(φ) = dom(ψ). We write φ ⊑simple
s ψ if:

1. For each destructor-only recipe R such that Rφ↓ is a (resp. atomic) message,
Rψ↓ is a (resp. atomic) message.

2. For each simple recipe R and destructor-only recipe R′ such that Rφ↓, R′φ↓
are messages and Rφ↓ = R′φ↓, we have that Rψ↓ = R′ψ↓.

3. For each destructor-only recipes R,R′, if Rφ↓ = sign(t, s), and R′φ↓ = vk(s)
for some term t and atom s, then Rψ↓ = sign(t′, s′), and R′ψ↓ = vk(s′) for
some term t′ and atom s′.

4. For each destructor-only recipe R, such that Rφ↓ = pub(s) for some atom s,
Rψ↓ = pub(s′) for some atom s′.

We write φ ⊑simple+

s ψ when the test described at item 2 is only performed
when (i) either R is destructor-only; (ii) or root(R) 6∈ {senc}∪{〈 〉k | 2 ≤ k ≤ n},
and root(R′) 6= adec.

This notion of static inclusion is equivalent to the original one.

Lemma 1. Let φ and ψ be two frames having the same domain. We have that:

φ ⊑s ψ ⇔ φ ⊑simple
s ψ ⇔ φ ⊑simple+

s ψ.

From this new characterisation of static inclusion ⊑simple
s , we derive the plan-

ning rules that capture all the cases of failures with those in Concrete−(RAna).

Ratom
fail = {att(u, v) −→ bad | u is an atom but v is not}

Rpub
fail = {att(pub(u), v) −→ bad | v is not of the form pub(v′)}

Rcheck
fail =

{

att(sign(u1, u2), v1)
att(vk(u2), v2)

−→ bad | check(v1, v2)↓ is not a message

}

Rtest
fail =







att(u1, v1), . . . , att(uk, vk)
att(C[u1, . . . , uk], v)

−→ bad |
C is a constructor context,
C[u1, . . . , uk] ∈ St(φ) ∪ C0
v 6= C[v1, . . . , vk].







Actually, not all subterms of St(φ) need to be considered. Therefore, we
consider an optimised version that captures only the terms that may not be
reconstructed from their subterms. Formally, Stopti(t) is defined as follows.

– Stopti(〈t1, t2〉) = Stopti(t1) ∪ Stopti(t2);
– Stopti(senc(t1, t2)) = Stopti(t1);

10

– Stopti(aenc(t1, t2)) = {aenc(t1, t2)} ∪ (Stopti(t1)r {t1})
– Stopti(sign(t1, t2)) = {sign(t1, t2)} ∪ Stopti(t1);
– Stopti(f(t)) = {f(t)} with f ∈ {hash, pub, vk}.

Thanks to the fact that ⊑simple+

s is equivalent to static inclusion, we may only
consider simple recipes which evaluation yields a term in Stopti(φ).

Lemma 2. Let φ be a frame, R = C[R1, . . . , Rk] be a simple recipe such that
root(R) 6∈ {senc} ∪ {〈 〉k | 2 ≤ k ≤ n}, and R′ be a destructor-only recipe such
that root(R′) 6= adec. Assume that Rφ↓ and R′φ↓ are both messages such that
Rφ↓ = R′φ↓. We have that either C is the empty context, or Rφ↓ ∈ Stopti(φ)∪C0.

Therefore, Rtest
fail can be replaced by the following (smaller) set of rules:

Rtest1
fail = {att(u1, v1), att(u1, v2) −→ bad | v1 6= v2}

Rtest2
fail = {att(u1, v1), . . . , att(uk, vk), att(C[u1, . . . , uk], v) −→ bad | C is a non-empty

constructor context, C[u1, . . . , uk] ∈ Stopti(φ) ∪ C0, and v 6= C[v1, . . . , vk].}

Let φ and ψ be two frames with dom(φ) = dom(ψ) and built using constants
from C ⊆ C0. The set of facts associated to φ and ψ is defined as follows:

FactC(φ, ψ) = {att(a, a) | a ∈ C} ∪ {att(wφ,wψ) | w ∈ dom(φ)}
Two frames are in static inclusion if, and only if, the corresponding planning

system has no solution. Actually, when the frames are not in static inclusion, we
provide a bound on the length of the (minimal) plan witnessing this fact.

Proposition 1. Let φ and ψ be two frames with dom(φ) = dom(ψ), and Θ =
〈Fact0,FactC0

(φ, ψ),R〉 where

R = Concrete(RAna) ∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail .

Let Π = 〈Θ, {bad}〉. We have that φ 6⊑s ψ if, and only if, Π has a solution
of length at most (N + 1) × depth(φ) + 1 where N is the number of names n
occurring in φ at a key position, i.e. such that n (resp. pub(n)) occurs in key
position of an encryption in φ.

Intuitively, once all needed keys are derived, the minimal plan witnessing
non-inclusion contains at most depth(φ) rules where depth(φ) is the maximal
depth of a term occurring φ. Then we may need depth(φ) rule to derive each
deducible key, hence the bound.

4 From trace inclusion to planning

We are now ready for the active case. Given two configurations, we show how to
build a planning problem such that the planning problem has a solution if, and
only if, the two corresponding configurations are not in trace inclusion.

In several places of this section, we will consider three special constants,
namely c⋆0 and c⋆1 of sort atom, and c⋆+ of sort bitstring. These three constants
have a special type, denoted τ⋆.

11

4.1 Abstract protocol rules

We first define the abstract rules describing the protocol behaviour. We de-
note CP (resp. CQ) the constants from C0 occurring in P (resp. Q), and we
consider C⋆ = (CP ∪ CQ) ⊎ {c⋆0, c

⋆
1, c

⋆
+}. For simplicity we assume that variables

of P and Q are disjoint. In addition to the facts of the form att(u, v) used to
represent attacker’s knowledge, we also consider:

– facts of the form Phase(i) with i ∈ N to represent phases; and
– facts of the form St(P,Q) = statecP,Q(idP , idQ) where P , Q are two basic

processes on channel c, and idP (resp. idQ) is the identity substitution of
domain fv (P) (resp. fv (Q)).

Therefore, in this section, we consider the infinite set of facts Fact0 that consists
of all the ground facts of this form, plus the special symbol bad.

To deal with phases, we mimic the Phase rule by considering basic processes
in normal form w.r.t. the rule i:j:P −→ j:P . Then, the transformation Rule(P ;Q)
from basic processes (in normal form) to abstract planning rules is defined by
Rule(P ;Q) = ∅ when P = i:0, and otherwise:

1. Case output: i.e. if P = i:out(c, u).P ′.
– {St(P,Q),Phase(i) −→ att(u, v), St(P ′, Q′); St(P,Q)} ∪ Rule(i:P ′; i:Q′)

when if Q = i:out(c, v).Q′

– {St(P,Q),Phase(i) −→ att(u, c⋆0), bad} otherwise.
2. Case input: i.e. P = i:in(c, u).P ′.

– {St(P,Q), att(u, v),Phase(i) −→ St(P ′, Q′); St(P,Q)} ∪ Rule(i:P ′; i:Q′)
when Q = i:in(c, v).Q′

– {St(P,Q), att(u, x),Phase(i) −→ bad} otherwise (with x fresh).

Intuitively, abstract rules simply try to mimic each step of P by a similar step
in Q. Clearly, ifQ cannot follow P , the two processes are not in trace equivalence,
which is modelled here by the bad state. Note that, in case P = i:out(c, u).P ′

whereas Q is not ready to perform an output, bad will be triggered only if the
sent term is indeed a message. This transformation is then extended to protocols
in a natural way considering in addition planning rule to model phase changes.
We consider P = {P1, . . . , Pn} and Q = {Q1, . . . , Qn}, and we assume w.l.o.g.
that Pi and Qi are basic processes on channel ci. We define:

– Rule(P ,Q) = Rule(P1, Q1) ∪ . . . ∪ Rule(Pn, Qn).
– Rphase = {Phase(i) −→ Phase(i+ 1) ; Phase(i) | i ∈ N}.

4.2 Concrete protocol rules

To derive concrete rules from the abstract ones, we could instantiate them with
arbitrary terms. However, this would not allow us to derive a decision procedure.
Moreover, we would like our algorithm to have good performance. To achieve
this, we first show that only three constants need to be considered (and no
nonces), in addition to those explicitly mentioned in the protocol.

12

Given a protocol P that is type-compliant w.r.t. to a typing system (TP , δP)

(and such that τ⋆ does not occur in δP(P)), an execution P
tr
−→ (P ′;φ′;σ′; i′) is

quasi-well-typed if δP(xσ
′) � δP(x) for every variable x ∈ dom(σ′) where � is

the smallest relation on types defined as follows:

– τ⋆ � τ and τ � τ for any type τ (initial or not);
– f(τ1, . . . , τk) � f(τ ′1, . . . , τ

′
k) when τ1 � τ ′1, . . . , τk � τ ′k, and f ∈ Σc.

The attacker needs at most the constants c⋆0, c
⋆
1, c

⋆
+ to mount an attack.

Theorem 1. Let KP be an initial configuration type-compliant w.r.t. (TP , δP)
and KQ be another initial C0-configuration. We have that KP 6⊑t KQ if, and only
if, there exists a witness (tr, φ) ∈ trace(KP) of this non-inclusion which only
involves constants from C⋆, simple recipes, and with a quasi-well-typed underlying
execution.

The existence of a quasi well-typed witness comes from [14] with some extra
work to guarantee that we can consider simple recipes. The reduction to three
constants extends the previous reduction [16] to asymmetric primitives.

Flattening. In terms of efficiency, one key step of our algorithm is to avoid
composition rules from the attacker. For static inclusion, we only consider specific
contexts, hence very specific synthesis rules, guided by the form of the underlying
frames. For the active case, we transform protocol rules in order to pre-compute
all necessary composition steps. This flattening step was already used in e.g. [3,
16], and is quite intuitive.

Example 7. Consider our Denning Sacco protocol presented in Example 1. Agent
B expects a message of the form u = {sign(〈a, b, x〉3, ska)}pub(skb). Either the at-
tacker obtains a message m of the expected form, or the attacker obtains several
components of it and forges the whole message. For example, it is sufficient
for him to obtain m1 of the form u1 = sign(〈a, b, x〉3, ska) and m2 of the form
u2 = pk(skb). Therefore, in addition to the (informal) protocol rule u→ . . ., we
also consider the rule u1, u2 → Similarly, we also need to consider the rules
a, b, x, ska, pk(skb) → . . . and a, b, x, ska, skb →

More generally, given an abstract protocol rule r, we now define Flat(r) the set
of rules obtained by performing flattening on each fact. To decompose a term, we
follow its structure, and the structure of a variable is given by its type. Moreover,
when the other side of the process is not able to follow the decomposition, this
leads us to a failure rule.

Definition 8. Given a term u ∈ T0(Σc, C0 ⊎ N ⊎ X), we say that u is decom-
posable when either u ∈ X and δP(u) is not an initial type; or u 6∈ C0 ⊎N ⊎ X .

A variable of non initial type is decomposable since it may be instantiated
by a non atomic term which, in turns, may have been obtained by composition.
Given att(u, v) with u decomposable, and let f ∈ Σc be such that δP(u) =
f(τ1, . . . , τk), split(att(u, v)) = (f; {att(x1, y1), . . . , att(xk, yk)};σP ;σQ) where

13

– x1, . . . , xk are fresh variables of type τ1, . . . , τk, σP = mgu(u, f(x1, . . . , xk));
– y1, . . . , yk are fresh variables, σQ = mgu(v, f(y1, . . . , yk)).

Note that σP exists and is necessarily a quasi-well-typed substitution. By
convention, we assume that mgu(u, u′) = ⊥ when u and u′ are not unifiable.

Let r be an abstract rule of the form Pre −→ Add;Del with f = att(u, v) ∈ Pre

such that u is decomposable and split(f) = (f, S, σP , σQ). The decomposition
of r w.r.t. f , denoted decom(r, f), is defined as follows:

1.
(

(Prer f) ∪ S −→ bad
)

σP in case σQ = ⊥;

2.
(

(Prer f) ∪ S −→ Add;Del
)

(σP ⊎ σQ) otherwise.

Then, decomposition is applied recursively on each rule.

Flat(r) = {r} ∪ Flat({decom(r, f) | f = att(u, v) ∈ Pre(r) with u decomposable})

Concretization. Given an abstract rule r, we denote vars left(r) the variables
occurring on the left (first parameter) of a predicate occurring in r, i.e.

vars left(att(u, v)) = vars(u); and vars left(state
c
P,Q(σP , σQ)) = vars(img(σP)).

Given a substitution σ grounding for r, the application of σ on an abstract
state is the concrete state obtained by simply composing the substitutions, i.e.

stcP,Q(σP , σQ)σ = stcP,Q(σ ◦ σP , σ ◦ σQ).

Given an abstract protocol rule r, its concretizations Concrete(r) simply con-
sist in all its positive and negative concretizations. The positive concretizations
are all its instantiations that are quasi-well-typed w.r.t. the left side of the rule.

Concrete+(r) = {rσ | σ substitution such that rσ only involves messages
with constants in C⋆ and δP(xσ) � δP(x) for any x ∈ vars left(r)}

Similarly to the static case, we need to make sure that we can detect when P
and Q are not in trace inclusion, and we therefore consider some additional
rules. Given an abstract protocol rule r = Pre −→ Add;Del, Concrete−(r) is
the set of planning rules that contains: f1, . . . , fk −→ bad for any sequence of
facts f1, . . . , fk such that f1, . . . , fk left-unify with Pre with substitution σL and
u ∈ T0(Σc,N ∪C⋆) for any att(u, v) ∈ AddσL, and such that one of the following
conditions holds:

– f1, . . . , fk does not right-unify with Pre;
– f1, . . . , fk right-unify with Pre with substitution σR but v 6∈ T0(Σc,N ∪ C⋆)

for some att(u, v) ∈ AddσR.

Main result Our main technical result states that our encoding is sound and
complete: two protocols are in trace inclusion if, and only if, the corresponding
planning system has a solution. Moreover, when a witness of non-inclusion exists,
we are able to bound the length of the resulting plan. Below, nbin(P) (resp.
nbout(P)) denotes the number of inputs (resp. outputs) occurring in P whereas
maxphase(P) is the maximal integer occurring in a phase instruction in P .

14

Theorem 2. Let P a protocol type-compliant w.r.t. (TP , δP), and Q be another
protocol. We consider the following set R of concrete rules:

Concrete(RAna∪Flat(Rule(P ,Q)))∪Rphase∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail

Let Θ = 〈Fact0,FactC⋆(P ,Q),R〉 and Π = 〈Θ, {bad}〉. We have that P 6⊑t Q if,
and only if, Π has a solution of length

1 + nbin(P) + nbout(P) +maxphase(P) + depth(δP (P))× [1 + nbin(P) +N]

where N is the number of names occurring in P having a key type, i.e. such that
δP(n) (resp. pub(δP(n))) occurs in key position of an encryption in δP(P).

Proof. (Sketch) It is rather easy to establish that a solution to the planning prob-
lem defines a witness of non trace inclusion. Conversely, thanks to Theorem 1, if
P 6⊑t Q, then there exists a quasi well-typed witness of non trace inclusion, that
uses at most three constants (besides the constants of P and Q). This witness
guides the definition of a plan of Π . Establishing a not too coarse bound on its
length requires some care. It relies on the flattening of the protocol and the fact
that the plan can mimic the computation of several messages in parallel. ⊓⊔

5 Algorithm

Similarly to the algorithm presented in [16], we decide trace inclusion by apply-
ing graph planning and SAT-solving techniques to the planning problem that en-
codes trace inclusion (thanks to Theorem 2). Given a protocol P , type-compliant
w.r.t. (TP , δP), and a protocol Q, our algorithm proceeds as follows.

1. It first computes the corresponding abstract rules, namely Flat(Rule(P ;Q))∪
RAna and the initial state Fact(P ,Q).

2. It then applies a planning graph algorithm, a standard technique to solve
planning problems (see e.g. [7]). The only difference is that, for efficiency
reasons, we do not contruct the planning problem Π a priori but instead,
we compute it “on the fly”, while building the associated planning graph. This
planning graph over-approximates the possible solutions by executing several
actions in parallel, even if they may be incompatible. Some incompatibilities
are recorded and propagated through so-called mutex. The planning graph
is deemed to capture all possible plans. More precisely, the planning graph
built until depth k captures all possible plans of length at most k.

3. In case no fact bad has been reached while building the planning graph, we
can immediately conclude that P ⊑t Q. Otherwise, since the planning graph
over-approximates the possible executions, we need to check that bad is truly
reachable. This is done by encoding each path leading to bad as a SAT for-
mula. We then call the SAT solver mini-SAT to decide its satisfiability. In
case bad is indeed reachable, mini-SAT provides a solution that is translated
back to a witness of non-inclusion. To improve termination, we check acces-
sibility of a state containing bad as soon as it appears in the graph, even if
the construction of the graph is not completed yet.

15

Termination. The algorithm defined above may not terminate. The planning
graph contains facts of the form att(u, v) where u must be (quasi) well-typed.
There is therefore only a finite number of such u. However, the planning graph
construction may introduce several facts of the form att(u, v1), . . . , att(u, vk),
where the vi get arbitrarily large. We exhibit some (contrived) examples where
the algorithm does not terminate (see Appendix A). [16] suggests that termina-
tion could be enforced by checking at each step (thanks to the SAT-solver) that
each node of the planning graph is indeed reachable. This would however not be
practical. Instead, we can enforce termination thanks to the bound provided in
Theorem 2 that also bounds the maximal depth of the planning graph that needs
to be considered. Indeed, it is sufficient to simply stop the construction of the
planning graph as soon as the bound is reached. The interest of this approach is
that we guarantee termination at no cost (computing the bound is immediate).
In practice, the planning graph is typically much smaller than this bound.

SAT-Equiv. We have implemented our new algorithm in the tool SAT-Equiv,
extending it to protocols with phases and all the standard cryptographic prim-
itives and guaranteeing termination. Moreover, we significantly improve its effi-
ciency by rewriting parts of the codes and modifying the data structure.

6 Experiments

In this section, we analyse several protocols of the literature and compare the
results obtained using different tools. We ran our experiments a single Intel 3.1
GHz Xeon. We limit the memory to 128 Go (MO stands for memory out) and
the execution time to 24h (TO stands for time out).

For all the considered protocols, we analyse strong secrecy of the exchanged
key or nonce, as for Example 5, except for the passport protocol (PA), for which
we prove anonymity as in [2]. We progressively increase the number of sessions
in order to consider a semi complete scenario, where Alice’s role is instantiated
by honest a talking to honest b or dishonest c and Bob’s role is instantiated
by b talking to a or c. This typically corresponds to 7 sessions in the case of a
symmetric key protocol (with 3 roles).

6.1 Comparison with the other tools

Our experiments show a significant speed-up w.r.t. the original version of SAT-
Equiv [16]. Our new is 100 faster in average, allowing to analyse about twice
more sessions, as exemplified in Figure 2 . We compare SAT-Equiv with other
tools of the literature that decide equivalence for a bounded number of sessions,
namely Spec [25], Akiss [8] and Deepsec [11]. We did not include APTE in our
study [9] as it is now subsumed by Deepsec. For each protocol, we progressively
increased the number of sessions until we reached a time out. The overall results
of our experiments are summarized in Figure 2. They show a significant speed-up
even w.r.t. the very recent Deepsec tool. Note however that Deepsec covers more

16

Spec Akiss Deepsec CSF’17 Sat-Eq

Denning-Sacco 7 10 35 98 > 210 (4h)
Needham-Schroeder sym 6 6 21 21 94∗ (20h30)

Wide Mouth Frog 7 12 28 84 > 210 (6min)
Yahalom-Paulson 6 6 12 7 > 28 (7h)

Passive Authentication 6 8 46 – > 400 (98s)
Active Authentication 6 8 50 – > 400 (78s)

Needham-Schroeder-Lowe 4 6 16 – > 64 (11min)
Denning-Sacco signature 8 8 18 – > 64 (100s)

Fig. 2. Comparison of SAT-Equiv with the other tools. We indicate the number of
sessions for which the tool fails (time out, memory out, or other issues). When we did
not reach the limit of the tool, we write > k to indicate that the tool can analyse more
than k sessions, and we indicate the analysis time for k. * see Section 6.2

protocols (with else branches, or not type compliant), except if they include
phases. Deepsec can also be parallelized thus the analysis time can be divided
by the number of available cores. The detailed results for the Denning-Sacco
protocol are below.

Denning-Sacco Spec Akiss Deepsec CSF’17 SAT-Equiv
3 12 s 0.08 s <0.01 s 0.3 s 0.07 s 42
6 5 h 9 s <0.01 s 1 s 0.1 s 64
7 MO 75 s <0.01 s 2 s 0.2 s 74
10 MO 0.01 s 4 s 0.3 s 114
21 18 s 60 s 1.3 s 216
35 TO 9 min 6 s 344
84 13 h 164 s 792
98 TO 6 min 920
210 4h20 1942

The 2nd column for SAT-Equiv indicates the theoretical bound on the length
of the planning graph, as given by Theorem 2. This illustrates that this bound
remains reasonable although our tool actually terminates before reaching it.

6.2 Towards an unbounded number of sessions

Although equivalence is undecidable in general for an unbounded number of ses-
sions, [13] exhibits a decidability result, for type-compliant protocols that have
an acyclic dependency graph. Intuitively, the dependency graph captures how
a message expected as input may be built (and therefore may depend) from
messages sent as output of the protocol. Decidability is proven by showing that
a (minimal) attack trace may be mapped to this dependency graph. Looking at
the dependency graphs of the Denning-Sacco and the Needham-Schroeder sym-
metric key protocols, we deduce that it is sufficient to analyse respectively 42
and 94 sessions. Thanks to the efficiency of SAT-Equiv, we can easily analyse 42
sessions of Denning-Sacco (in 10s). We can therefore deduce from [13] that the

17

protocol remains secure even if the considered sessions are arbitrarily replicated.
The case of the Needham-Schroeder protocol requires a bit more work as 94 ses-
sions is slightly out of reach of SAT-Equiv. However, we noticed that, according
to [13], we do not need to analyse 94 full sessions. Instead, some of them may be
truncated (a minimal attack will use only the first step for example). Since SAT-
Equiv can prove equivalence of these refined 94 sessions (in 20h30min), we can
again deduce from [13] that the protocol remains secure even if the considered
sessions are arbitrarily replicated.

As future work, we plan to optimize the bound on sessions induced by [13]
and automatically generate the desired scenario, in order to extend SAT-Equiv
to proofs of equivalence for an unbounded number of sessions.

References

1. Martín Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In Proc. 28th ACM Symposium on Principles of Programming Languages,
POPL ’01, pages 104–115. ACM, 2001.

2. Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkabil-
ity and anonymity using the applied pi calculus. In Proc. 23rd Computer Security
Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press,
2010.

3. Alessandro Armando and Luca Compagna. Sat-based model-checking for security
protocols analysis. International Journal of Information Security, 7:3–32, 2008.

4. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models
and reference implementations for the TLS 1.3 standard candidate. In Proc. 38th
IEEE Symposium on Security and Privacy (S&P’17). IEEE Computer Society
Press, 2017.

5. Bruno Blanchet. Symbolic and computational mechanized verification of the AR-
INC823 avionic protocols. In Proc. 30th IEEE Computer Security Foundations
Symposium (CSF’17), pages 68–82. IEEE Computer Society Press, 2017.

6. Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. Journal of Logic and Algebraic Pro-
gramming, 75(1):3–51, February–March 2008.

7. Avrim Blum and Merrick Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90:281–300, 1997.

8. Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of equiv-
alence properties of cryptographic protocols. In Proc. 21th European Symposium
on Programming (ESOP’12), LNCS, pages 108–127, 2012.

9. Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Proc. 20th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’14), volume 8413 of LNCS, pages 587–592, 2014.

10. Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. Deciding equivalence-
based properties using constraint solving. Theoretical Computer Science, 492:1–39,
June 2013.

11. Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec: Deciding equiv-
alence properties in security protocols - theory and practice. In Proc. 39th IEEE
Symposium on Security and Privacy (S&P’18), pages 525–542. IEEE Computer
Society Press, 2018.

18

12. Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Typing messages for
free in security protocols: the case of equivalence properties. In Proc. 25th Inter-
national Conference on Concurrency Theory (CONCUR’14), LNCS, Rome, Italy,
2014. Springer.

13. Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace
equivalence for protocols with nonces. In Proc. the 28th IEEE Computer Security
Foundations Symposium (CSF’15). IEEE Computer Society Press, 2015.

14. Rémy Chrétien, Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. Typ-
ing messages for free in security protocols. Technical report, 2018.

15. Luca Compagna. SAT-based Model-Checking of Security Protocols. PhD thesis,
Università degli Studi di Genova and the University of Edinburgh (joint pro-
gramme), September 2005.

16. Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. SAT-Equiv: an effi-
cient tool for equivalence properties. In Proc. of the 30th IEEE Computer Security
Foundations Symposium (CSF’17). IEEE Computer Society Press, August 2017.

17. Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. Efficiently deciding
equivalence for standard primitives and phases. Research report, https://hal.
archives-ouvertes.fr/hal-01819366, June 2018.

18. Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A type
system for privacy properties. In Proc. 24th ACM Conference on Computer and
Communications Security (CCS’17), pages 409–423. ACM, 2017.

19. Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. Equiv-
alence properties by typing in cryptographic branching protocols. In Proc. 7th
International Conference on Principles of Security and Trust (POST’18), LNCS,
2018.

20. Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of TLS 1.3. In Proc. 24th ACM Con-
ference on Computer and Communications Security (CCS’17), pages 1773–1788.
ACM, 2017.

21. Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. Journal of Computer Security, (4):435–487,
July 2008.

22. Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-based
inference system for the NRL protocol analyzer and its meta-logical properties.
Theoretical Computer Science, 367(1-2):162–202, 2006.

23. Henri Kautz and Bart Selman. Planning as satisfiability. In Proc. 10th European
Conference on Artificial Intelligence (ECAI’92), pages 359–363, 1992.

24. Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. In Proc. 25th International
Conference on Computer Aided Verification (CAV’13), volume 8044 of LNCS,
pages 696–701. Springer, 2013.

25. Alwen Tiu and Jeremy Dawson. Automating open bisimulation checking for the
spi calculus. In Proc. 23rd IEEE Computer Security Foundations Symposium
(CSF’10), pages 307–321. IEEE Computer Society Press, 2010.

19

A Examples of non termination

We exhibit two examples on which the original SAT-Equiv algorithm does not
terminate. Given a channel c, consider P (c) and Q(c) defined as follows.

P (c) := in(c, 〈x, a〉).out(c, 〈x, a〉)
Q(c) := in(c, 〈x, a〉).out(c, 〈〈x, x〉, a〉)

where a is a public constant and x a variable. We consider KP = {P (c1);P (c2)}
and KQ = {Q(c1);Q(c2)} for some public channel names c1, c2. Starting with
att(b, b) (with b a public constant in the initial knowledge of the attacker), the
following facts will be successively added when computing the planning graph:

att(〈b, a〉, 〈b, a〉), att(〈b, a〉, 〈〈b, b〉, a〉), att(〈b, a〉, 〈〈〈b, b〉, 〈b, b〉〉, a〉), . . .

Actually, att(〈b, a〉, 〈〈b, b〉, a〉) can be added in two different ways: either consid-
ering the output on c1, or the one on c2. Therefore this fact will not be put
in mutex with the other ones. In particular, the fact att(〈b, a〉, 〈〈b, b〉, a〉) and
the state fact indicating that the process on channel c1 has not yet started
are not in mutex, and can be used to trigger the planning rules leading to
att(〈b, a〉, 〈〈〈b, b〉, 〈b, b〉〉, a〉). Since the term computed on the Q’s side grows
at each step, this computation is endless.

Here, KP is not trace included in KQ: an attacker can distinguish between b

and 〈b, b〉. So, as soon as a message is outputted, the resulting frames are not in
static inclusion. Therefore, termination can be retrieved by enforcing SAT-Equiv
to stop the exploration of the planning graph as soon as an attack is found.

We can turn this example into a more complex one on which the original
SAT-Equiv will not terminate even if we decide to stop the exploration of the
planning graph as soon as an attack is found. Consider the processes P0(c), P1(c)
and Q1(c) given below. We assume that k is name representing a symmetric
secret key, whereas a, b, c are public constants.

P0(c) = in(c, x).out(c, senc(x, k))
P1(c) = in(c, 〈senc(a, k), senc(b, k), senc(c, k)〉3).P (c)
Q1(c) = in(c, 〈senc(a, k), senc(b, k), senc(c, k)〉3).Q(c)

We consider the configurations K′
P = {P0(c0);P0(c1);P1(c2);P1(c3)} and K′

Q =
{P0(c0);P0(c1);Q1(c2);Q1(c3)} where c0, c1, c2, c3 are public channel names. Pro-
cesses P0 on channels c0 and c1 are used as oracles. Roughly, we can get two
ciphertexts among the three ciphertexts: senc(a, k), senc(b, k), and senc(c, k). It
is however not possible to get the three of them. Noticing this, it is then easy to
see that KP and KQ are trace included.

However, as in the previous example, the planning graph is not precise enough
to detect that it is not possible to obtain these three ciphertexts. Once the
inputs on channel c2 and c3 are executed, we reach a situation similar to the one
discussed in the previous example. Each time bad will be added into the planning
graph, our SAT encoding will tell us that this state is not truly reachable (but
only exists in the over-approximation). Thus, we will continue to explore the
planning graph for ever since no attack will be found (the protocols are trace-
equivalent).

20

