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= String constraints by example
= A word equation primer

= Decidable fragments of string constraints



Strings in Verification



String in verification

// Pre = (true)

String s= ’7;

// P1=(s€e€)

while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3
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String in verification

// Pre = (true)

String s= ’’;
// P1=(s€e€)
while (%) {
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;
}
// P3 = P
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);
// Post = P3

— Need a solver that supports all those
operators!
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Alphabets

= All constraints are formulated w.r.t. to
some fixed finite alphabet >

= ¥ ={a,b,c,d}
= > ={0,...,255} (e.g., 8-bit ASCII)
= ¥ ={0,...,2°* -1} (e.qg., UTF-32)
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Semantics and notation

= Finite sequences of letters: X*
= Empty word: ¢
= Concatenation: z -y

= Equations: s =t
= Regular expressions: z € L
= Word length: |x|
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LARGE Alphabets

= Nalve use of finite-state automata quickly
becomes impossible

= Concrete letters as transition guards -
far too many transitions are needed to
express interesting languages

= Symbolic handling of letters is necessary

= Sometimes complex string conversion
functions necessary, e.q.
UTF-8 & UTF-32
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Injection attacks

HI, THIS 15

YOUR SON'G SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

K%W

OH, DEAR - DID HE
BREAK SOMETHING?

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students:—- 7

-~ OH,YES LITTLE
ROBBY TARLES,
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YDURE HAPPY.
\Il AND I HOPE
. YOUVE LEARNED
TO SANMIZE YOUR
DATARACE INPUTS,

xkcd.com
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What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
_|_"');");
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What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
+"');");

Command with input substituted

INSERT INTO students (name) VALUES ('Robert'),; DROP TABLE students;--"');
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What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
_|_"');");

Command with input substituted

INSERT INTO students (name) VALUES ('Robert'),; DROP TABLE students;--"');




What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
_I_"');");

Since no sanitisation is applied,
program is vulnerable to SQL injection
attacks!
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How can this be detected?

Input:
User-controlled strings

|

Program
code

|

Output:

SQL commands
21
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What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
_I_"');");

However, this case could more easily be
found with techniques like taint tracking

But what if sanitisation were actually
applied?
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A subtle XSS vulnerability

JavaScript embedded in a web-page

var X = goog.string.htmlEscape (cat);
var y = goog.string.escapeString (x);

catElem.innerHTML =

'<button onclick="createCatList (\''"' +
y + '"\")">' + x + '</button>';
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A subtle XSS vulnerability

JavaScript embedded | web-p<c ge
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An XSS vulnerability (2)

JavaScript embedded in a web-page

var x = goog.string.htmlEscape (cat):;
var y = goog.string.escapeString(x):;

catElem.1nnerHTML =
'<button onclick="createCatList (\'"' +
y + '"\")">'" + x + '</button>"';

One possible attack
Choose cat to be ') ;alert(1);//

Generated HTML string is then:
<button onclick="createCatList ('&#39;);alert(1);//"')">
&#39;) ;alert(l);//</button>
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An XSS vulnerability (2)

JavaScript embedded in a web-page

var x = goog.string.htmlEscape (cat):;
var y = goog.string.escapeString(x);

catElem.innerHTML =
'<button onclick="creat
y+ '\')">| _|_X_|_ '</bu

One possible att
Choose cat to be ") ;

Generated HTML string is then:
<button onclick="createCatlList ('&#39;) ;alert(1l);//")">
&#39;) ;alert (1) ;//</button>



Cross-site scripting

POST /comment.php?
INSERT ... text=<script>alert(l)</script>

'<script>alert(l)</script>'

o IIIIIIIIII* )
ﬁ ¥ Server <htmt> Client 1

‘¢" Comments:
‘.*‘ <script>alert(l)</script>

</ﬁ%ﬁl>

SELECT ... =>
'<script>alert(l)</script>"

Client 2

http://blog.aboutme.vn/choi-xss-tai-knock-xss-moe/
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Solvers for escape ops?

33



Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks
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Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

toUpperCase

a/A

B TR
c/C
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Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

toUpperCase htmlEscape replaceAll

a/A
»Q c/C _» >/ &gt
.. &/ &amp;
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Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

toUpperCase htmlEscape replaceAll
a/A

»Q c/C —> >/ &gt ;
.. &/ &amp;

Do not preserve length ... -



Other operations

= String reversal

= Context-free grammars

= String-to-number conversions

= Replace-all with symbolic arguments

38



Solving
String
Constraints




Bit of Solver History

= Bounded-length solvers

= Bit-vector-based: Hampi, Kaluza
= CP-based: Gecode

= Automata-based tools
= Stranger, TRAU

= SMT/DPLL/CDCL-based methods
= /Z3-str/2/3, CVC4, S3/p, Norn, Sloth

(+ much theoretic work) "



Solving Word Equations

= What are the solutions those equations?

41



Nielsen's transformation

(also called Levi's lemma)
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Nielsen's transformation

(also called Levi's lemma)




As a tableau rule

Nielsen's transformation

rxo = yp

T =yz J
Z]

zalz/yz] = Blz/yz] | aly/z

B[y/ 2]
(z fresh)
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As a tableau rule

Nielsen's transformation

rxo = yp

T =yz J
Z]

zalz/yz] = Blz/yz] | aly/z

B[y/ 2]
(z fresh)

af = ay a’a="‘b'p

B=n *
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In the example

r-y=u-‘ab -v
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How about this one?
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How about this one?

48



How about this one?
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What can be done?

lgnore cycles and hope for the best!

ldentify fragments for which NT is
guaranteed to terminate

= Acyclic; straight-line

Improve NT and add termination criteria

= Makanin's method
= Simpler algorithms for quadratic equations



Quadratic word equations

r-y=u-ab -v
x.y:y.z

= Consider satisfiability of a
single quadratic equation

51



Quadratic = simpler?

Nielsen's transformation

rxo = yp

T = Yz Yy =
zalr/yz| = Blr/yz] | aly/zz] =

(z fresh)
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Quadratic = simpler?

Nielsen's transformation

rxo = yp

T =Yz Yy =2
zolz/yz] = Blx/yz] | aly/zz] =2

(z fresh)
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A decision procedure

Modified Nielsen rule

T = yps
T — Y T — Yz Yy — T2
alz/yl = Blz/y] | zalz/yz] = Blxz/yz] | oly/zz] = 2Bly/zz]

(z fresh)
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A decision procedure

Modified Nielsen rule

ro=yp
x—y x — Yz Y — T2
alz/y] = Blz/y] | zalz/yz] = PBlz/yz] | aly/zz] = 2Bly/zz]
(z fresh)
Further rules o =3

: (equations

afl = ay ‘a’a = ‘0B : equal up to
o = renaming of

B =7 * variables)




x.‘a’.y:y.‘b’.z
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Even more rules

One-sided Nielsen rule

ra = ‘a’p

xr — ‘a’z
zalz/‘a’z] = Blx/‘a’z]

(z fresh)

r — €

alz/e] =‘a’Bl /€]

57



Soundness
 If root is satisfiable, at least one branch cannot
be closed

Completeness

* If root Is unsat, a closed proof exists

* Follows from termination

* Open branches - satisfying assignments

Termination

o # of variable occurrences does not increase

* Up to renaming of variables, only finitely many
different equations exist



Soundness argument

= Label equations a = 5 In the proof with:

= T if equation is unsat

= (o,l) If equation is sat, has o variable
occurrences, and [ is length of « for the
shortest solution

Order pairs (o,l) lexicographically

Lemma

In each application of the Nielsen rule, if the
parent is labelled with p < T, then at least one
child has label <p.



Soundness argument

= Label equations a = 5 In the proof with:

= T if equation is unsat

" (o,1) If equation is sat, has o variable
occurrences, and | r the

Decreasing labels
shortest solution N =

Order pairs (o,l) le  be closed!

Lemma

In each application ¢’ che Nielsen rule, if the
parent is labelled with p < T, then at least one
child has label <p.



Quadratic
Yy = Yz

Equations
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Regex
Constraints
x €L

Quadratic
Yy = Yz
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Regex
Constraints

x e L
v/

Quadratic
Yy = Yz
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Combinations ...

Regex
Constraints

x e L
v/

Length
Constraints
2| = |yl +3

Quadratic
Yy = Yz
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Regex
Constraints

x e L
v/

Length
Constraints
2| = |yl +3

Quadratic
Yy = Yz
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Combinations ...

Regex
Constraints

c L
’ Length

Constraints
x| = |yl +3
Quadratic
Yy = Yz

Transduction
toUpper(x,y)




Regex
Constraints
x €L

Length
Constraints
x| = |yl +3

Quadratic
Yy = Yz

Transduction
toUpper(x,y)

Undecidable
(e.q., PCP)
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Transduction
toUpper(x,y)

Undecidable
(e.g., PCP)
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Length
Constraints
x| = |yl +3

Quadratic
Yy = Yz

Transduction
toUpper(x,y)

Undecidable
(e.g., PCP)
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The Norn fragment

1. Boolean structure

2. Acyclic (linear) word equations
3. Regex memberships

4. Length constraints

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukas Holik, Ahmed Rezine, Philipp RUmmer, Jari Stenman:
String Constraints for Verification. CAV 2014 -



The Norn fragment
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2. Acyclic (linear) word equations
3. Regex memberships
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(a decidable fragment)

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukas Holik, Ahmed Rezine, Philipp RUmmer, Jari Stenman:
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The Norn fragment

1. Boolean structure Order in
. : : which
2. Acyclic (linear) word equations SoEEElUE
3. Regex memberships handles
operators

4. Length constraints

(a decidable fragment)

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukas Holik, Ahmed Rezine, Philipp RUmmer, Jari Stenman:
String Constraints for Verification. CAV 2014 7



// Pre = (true)
String s= 7’
// P1=(s€e€)
while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

.
b

}

// P3=P;

assert (!s.contains(’ba’) && (s.length()
// Post = P3

T

2)

74



1. Boolean structure

= Use standard DPLL/CDCL - Easy
= Just consider conjunctions of literals

= But we need to handle negation!

= Negated word equations
= Negated regex constraints
= Negated length constraints
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1. Boolean structure

= Use standard DPLL/CDCL - Easy
= Just consider conjunctions of literals

= But we need to handle negation!

- Negated word equations  ?
= Negated regex constraints v
- Negated length constraints v
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1b. Negative word eqs.

Can be reduced to positive equations:

77



1b. Negative word eqs.

Can be reduced to positive equations:

Large alphabets
- a, b need to be
handled symbolically
In practice 78



Can be reduced to positive equations:

Lemma
dJaeX,uedX . r=vy-a-u; or
JaeXueX . y=a-a-u; or
TFy & _ i’
Ja #b€ X, p,u,v e X*.
Theorem

Any Boolean combination of word equations can
be reduced to a single word equation with the
same set of solutions (when projected to the
original set of variables).



2. Acyclic word equations

= Reduce to solved form by systematic
application of Nielsen’s transformation:

ZElztl/\"'/\QZn:tn

(z1,...,z, do not occurin t1,...,t,)

= After that, eliminate equations by
Inlining!
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3. Regular expressions

= Membership tests with concatenation
can be split:

n
sctel ~ \[seLlintecls
1=1

= Tests with same left-hand side can be
merged:

reLiNx €Ly ~ x€L1NLs

81



3. Regular expressions

= Membership tests with concatenation
can be split:

n
sctel ~ \[seLlintecls
1=1

Disjunction over

» Tests with same left-I states of be
automaton

merged: representing £

reLiNx €Ly ~ x€L1NLs

82



4. Length constraints

= Compute the length abstraction of
each regex constraint:

rel ~ |x|le{|lw||weL}

= Conjoin length abstractions with other
length constraints and check
satisfiability

83



4. Length constraints

= Compute the length abstraction of
each regex constraint:

rel ~ |x|le{|lw||weL}

= Conjoin length abstrac ons with other
length constraints and ‘eck
satisfiability
A Presburger
formula that can

be extracted in
linear time from £ ”



5. Optimisations ...

= E.g., exploit length information when
splitting equations or regexes

(still too slow ...)
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The Sloth fragments

1. Boolean structure (no negation)
2. Straight-line word equations
3. n-track transducer constraints

Lukas Holik, Petr Janku, Anthony W. Lin, Philipp RUmmer,
Tomas Vojnar: String constraints with concatenation and
transducers solved efficiently. PACMPL 2(POPL): 4:1-4:32 "

(2018)



The Sloth fragments

1. Boolean structure (no negation)
2. Straight-line word equations
3. n-track transducer constraints

— also decidable!

Lukas Holik, Petr Janku, Anthony W. Lin, Philipp RUmmer,
Tomas Vojnar: String constraints with concatenation and
transducers solved efficiently. PACMPL 2(POPL): 4:1-4:32 .

(2018)
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Conclusions:

Are we there vet?

Expressiveness

Efficiency Precision/
guarantees



« Parosh Aziz Abdulla = Petr Janku
= Mohamed Faouzi = Anthony W. Lin

Atig = Ahmed Rezine
= Yu-Fang Chen = Jari Stenman
= Bui Phi Diep

* Tomas Vojnar
= Lukas Holik

= and others

90



Further topics

= The SMT-LIB standard for strings
(work In progress ...)

= Solver applying under- and over-
approximations

= Context-free grammars
= Model counting

93
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