SMT, Strings, Security

Philipp Rummer

Uppsala University

EPIT, April 10", 2018

= String constraints by example
= A word equation primer

= Decidable fragments of string constraints

Strings in Verification

String in verification

// Pre = (true)

String s= ’7;

// P1=(s€e€)

while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

String in verification

//VPre = (true)

String s= ’7;

// P1=(s€e€)

while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

String in verification

// Pre = (
String s=\""7;
// P1=(s€e€)
while (*x){

// Po=(s=u-vAuea* Aveb"Alul =|v|)
Q=)a) +S+)b);

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

String in verification

// Pre = (true)
String s= ’7;
// P1=(s€e€)
while (*){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;
}
// P3= P
assert (!s.cont
// Post = P3

(’ba’) && (s.length() % 2) == 0);

String in verification

// Pre = (true)
String s= ’7;
// P1=(s€e€)
while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

String in verification

// Pre = (true)

String s= ’7;

// P1=(s€e€)

while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

String in verification

// Pre = (true)

String s= ’7;

// P1=(s€e€)

while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

10

String in verification

// Pre = (true)

String s= ’7;

// P1=(s€e€)

while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

}
// P3=P;
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);

// Post = P3

11

String in verification

// Pre = (true)

String s= ’’;
// P1=(s€e€)
while (%) {
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;
}
// P3 = P
assert (!s.contains(’ba’) && (s.length() 7% 2) == 0);
// Post = P3

— Need a solver that supports all those
operators!

12

Alphabets

= All constraints are formulated w.r.t. to
some fixed finite alphabet >

= ¥ ={a,b,c,d}
= > ={0,...,255} (e.g., 8-bit ASCII)
= ¥ ={0,...,2°* -1} (e.qg., UTF-32)

13

Semantics and notation

= Finite sequences of letters: X*
= Empty word: ¢
= Concatenation: z -y

= Equations: s =t
= Regular expressions: z € L
= Word length: |x|

14

LARGE Alphabets

= Nalve use of finite-state automata quickly
becomes impossible

= Concrete letters as transition guards -
far too many transitions are needed to
express interesting languages

= Symbolic handling of letters is necessary

= Sometimes complex string conversion
functions necessary, e.q.
UTF-8 & UTF-32

15

Injection attacks

HI, THIS 15

YOUR SON'G SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

K%W

OH, DEAR - DID HE
BREAK SOMETHING?

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students:—- 7

-~ OH,YES LITTLE
ROBBY TARLES,
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YDURE HAPPY.
\Il AND I HOPE
. YOUVE LEARNED
TO SANMIZE YOUR
DATARACE INPUTS,

xkcd.com

16

What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
|"');");

17

What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
+"');");

Command with input substituted

INSERT INTO students (name) VALUES ('Robert'),; DROP TABLE students;--"');

18

What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
|"');");

Command with input substituted

INSERT INTO students (name) VALUES ('Robert'),; DROP TABLE students;--"');

What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
I"');");

Since no sanitisation is applied,
program is vulnerable to SQL injection
attacks!

20

How can this be detected?

Input:
User-controlled strings

|

Program
code

|

Output:

SQL commands
21

How can this be detected?

Input:
User-controlled strings

|

Program
code

|

Output:
SQL commands

How can this be detected?

Input:
User-controlled strings

|

Program
code

|

Output:
SQL commands

What is happening here?

Possible SQL command in a program

database.execute (
"INSERT INTO students (name) VALUES ('"
+ name
I"');");

However, this case could more easily be
found with techniques like taint tracking

But what if sanitisation were actually
applied?

24

A subtle XSS vulnerability

JavaScript embedded in a web-page

var X = goog.string.htmlEscape (cat);
var y = goog.string.escapeString (x);

catElem.innerHTML =

'<button onclick="createCatList (\''"' +
y + '"\")">' + x + '</button>';

25

A subtle XSS vulnerability

JavaScript embedded in a web-p< ge

var X = goog.string.htmlEscape (cat);
var y = goog.string.escapeString (x);

catElem.innerHTML =

'<button onclick="createCatList (\''"' +
y + '"\")">' + x + '</button>';

26

A subtle XSS vulnerability

JavaScript embedded i web-pc ge

var X = goog.string.htmlEscape (cat);
var y = goog.string.escapeString (x);

catElem.innerHTML =

'<button onclick="createCatList (\''"' +
y + '"\")">'" + x + '</button>';

27

A subtle XSS vulnerability

JavaScript embedded | web-p<c ge

var X = goog.string.htmlEscape (cat);
var y = goog.string.escapeString(x);

catElem.innerHTML =
'<button onclick="cre CatList (\'' +
y_l_ '\')">l + x + '</but

An XSS vulnerability (2)

JavaScript embedded in a web-page

var x = goog.string.htmlEscape (cat):;
var y = goog.string.escapeString(x):;

catElem.1nnerHTML =
'<button onclick="createCatList (\'"' +
y + '"\")">'" + x + '</button>"';

One possible attack
Choose cat to be ') ;alert(1);//

Generated HTML string is then:
<button onclick="createCatList ('');alert(1);//"')">
') ;alert(l);//</button>

An XSS vulnerability (2)

JavaScript embedded in a web-page

var x = goog.string.htmlEscape (cat):;
var y = goog.string.escapeString(x):;

catElem.1innerHTML =
'<button onclick="createCatList (\'"' +
y + '"\")">'" + x + '</button>"';

One possible att
Choose cat to be ") ;

Generated HTML string is then:
<button onclick="createCatList ('') ;alert(1l);//")">
') ;alert (1) ;//</button>

An XSS vulnerability (2)

JavaScript embedded in a web-page

var x = goog.string.htmlEscape (cat):;
var y = goog.string.escapeString(x);

catElem.innerHTML =
'<button onclick="creat
y+ '\')">| _|_X_|_ '</bu

One possible att
Choose cat to be ") ;

Generated HTML string is then:
<button onclick="createCatlList ('') ;alert(1l);//")">
') ;alert (1) ;//</button>

Cross-site scripting

POST /comment.php?
INSERT ... text=<script>alert(l)</script>

'<script>alert(l)</script>'

o IIIIIIIIII*)
ﬁ ¥ Server <htmt> Client 1

‘¢" Comments:
‘.*‘ <script>alert(l)</script>

</ﬁ%ﬁl>

SELECT ... =>
'<script>alert(l)</script>"

Client 2

http://blog.aboutme.vn/choi-xss-tai-knock-xss-moe/

32

Solvers for escape ops?

33

Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

34

Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

toUpperCase

a/A

B TR
c/C

35

Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

toUpperCase htmlEscape replaceAll

a/A
»Q c/C _» >/ >
.. &/ &

36

Solvers for escape ops?

= We need transducers!
— Automata with multiple tracks

toUpperCase htmlEscape replaceAll
a/A

»Q c/C —> >/ > ;
.. &/ &

Do not preserve length ... -

Other operations

= String reversal

= Context-free grammars

= String-to-number conversions

= Replace-all with symbolic arguments

38

Solving
String
Constraints

Bit of Solver History

= Bounded-length solvers

= Bit-vector-based: Hampi, Kaluza
= CP-based: Gecode

= Automata-based tools
= Stranger, TRAU

= SMT/DPLL/CDCL-based methods
= /Z3-str/2/3, CVC4, S3/p, Norn, Sloth

(+ much theoretic work) "

Solving Word Equations

= What are the solutions those equations?

41

Nielsen's transformation

(also called Levi's lemma)

42

Nielsen's transformation

(also called Levi's lemma)

As a tableau rule

Nielsen's transformation

rxo = yp

T =yz J
Z]

zalz/yz] = Blz/yz] | aly/z

B[y/ 2]
(z fresh)

44

As a tableau rule

Nielsen's transformation

rxo = yp

T =yz J
Z]

zalz/yz] = Blz/yz] | aly/z

B[y/ 2]
(z fresh)

af = ay a’a="‘b'p

B=n *

45

In the example

r-y=u-‘ab -v

46

How about this one?

47

How about this one?

48

How about this one?

49

What can be done?

lgnore cycles and hope for the best!

ldentify fragments for which NT is
guaranteed to terminate

= Acyclic; straight-line

Improve NT and add termination criteria

= Makanin's method
= Simpler algorithms for quadratic equations

Quadratic word equations

r-y=u-ab -v
x.y:y.z

= Consider satisfiability of a
single quadratic equation

51

Quadratic = simpler?

Nielsen's transformation

rxo = yp

T = Yz Yy =
zalr/yz| = Blr/yz] | aly/zz] =

(z fresh)

52

Quadratic = simpler?

Nielsen's transformation

rxo = yp

T =Yz Yy =2
zolz/yz] = Blx/yz] | aly/zz] =2

(z fresh)

53

A decision procedure

Modified Nielsen rule

T = yps
T — Y T — Yz Yy — T2
alz/yl = Blz/y] | zalz/yz] = Blxz/yz] | oly/zz] = 2Bly/zz]

(z fresh)

54

A decision procedure

Modified Nielsen rule

ro=yp
x—y x — Yz Y — T2
alz/y] = Blz/y] | zalz/yz] = PBlz/yz] | aly/zz] = 2Bly/zz]
(z fresh)
Further rules o =3

: (equations

afl = ay ‘a’a = ‘0B : equal up to
o = renaming of

B =7 * variables)

x.‘a’.y:y.‘b’.z

56

Even more rules

One-sided Nielsen rule

ra = ‘a’p

xr — ‘a’z
zalz/‘a’z] = Blx/‘a’z]

(z fresh)

r — €

alz/e] =‘a’Bl /€]

57

Soundness
 If root is satisfiable, at least one branch cannot
be closed

Completeness

* If root Is unsat, a closed proof exists

* Follows from termination

* Open branches - satisfying assignments

Termination

o # of variable occurrences does not increase

* Up to renaming of variables, only finitely many
different equations exist

Soundness argument

= Label equations a = 5 In the proof with:

= T if equation is unsat

= (o,l) If equation is sat, has o variable
occurrences, and [is length of « for the
shortest solution

Order pairs (o,l) lexicographically

Lemma

In each application of the Nielsen rule, if the
parent is labelled with p < T, then at least one
child has label <p.

Soundness argument

= Label equations a = 5 In the proof with:

= T if equation is unsat

" (o,1) If equation is sat, has o variable
occurrences, and | r the

Decreasing labels
shortest solution N =

Order pairs (o,l) le be closed!

Lemma

In each application ¢’ che Nielsen rule, if the
parent is labelled with p < T, then at least one
child has label <p.

Quadratic
Yy = Yz

Equations

61

Regex
Constraints
x €L

Quadratic
Yy = Yz

62

Regex
Constraints

x e L
v/

Quadratic
Yy = Yz

63

Combinations ...

Regex
Constraints

x e L
v/

Length
Constraints
2| = |yl +3

Quadratic
Yy = Yz

64

Combinations ...

Regex
Constraints

x e L
v/

Length
Constraints
2| = |yl +3

Quadratic
Yy = Yz

65

Combinations ...

Regex
Constraints

x e L
v/

Length
Constraints
2| = |yl +3

Quadratic
Yy = Yz

66

Combinations ...

Regex
Constraints

c L
’ Length

Constraints
x| = |yl +3
Quadratic
Yy = Yz

Transduction
toUpper(x,y)

Regex
Constraints
x €L

Length
Constraints
x| = |yl +3

Quadratic
Yy = Yz

Transduction
toUpper(x,y)

Undecidable
(e.q., PCP)

68

Transduction
toUpper(x,y)

Undecidable
(e.g., PCP)

69

Length
Constraints
x| = |yl +3

Quadratic
Yy = Yz

Transduction
toUpper(x,y)

Undecidable
(e.g., PCP)

70

The Norn fragment

1. Boolean structure

2. Acyclic (linear) word equations
3. Regex memberships

4. Length constraints

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukas Holik, Ahmed Rezine, Philipp RUmmer, Jari Stenman:
String Constraints for Verification. CAV 2014 -

The Norn fragment

1. Boolean structure

2. Acyclic (linear) word equations
3. Regex memberships

4. Length constraints

(a decidable fragment)

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukas Holik, Ahmed Rezine, Philipp RUmmer, Jari Stenman:
String Constraints for Verification. CAV 2014 .

The Norn fragment

1. Boolean structure Order in
. : : which
2. Acyclic (linear) word equations SoEEElUE
3. Regex memberships handles
operators

4. Length constraints

(a decidable fragment)

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukas Holik, Ahmed Rezine, Philipp RUmmer, Jari Stenman:
String Constraints for Verification. CAV 2014 7

// Pre = (true)
String s= 7’
// P1=(s€e€)
while (*x){
// Pr=(s=u-vAuea* Aveb"Alul =]|v|)
s= ’a’ + s + ’b’;

.
b

}

// P3=P;

assert (!s.contains(’ba’) && (s.length()
// Post = P3

T

2)

74

1. Boolean structure

= Use standard DPLL/CDCL - Easy
= Just consider conjunctions of literals

= But we need to handle negation!

= Negated word equations
= Negated regex constraints
= Negated length constraints

75

1. Boolean structure

= Use standard DPLL/CDCL - Easy
= Just consider conjunctions of literals

= But we need to handle negation!

- Negated word equations ?
= Negated regex constraints v
- Negated length constraints v

76

1b. Negative word eqs.

Can be reduced to positive equations:

77

1b. Negative word eqs.

Can be reduced to positive equations:

Large alphabets
- a, b need to be
handled symbolically
In practice 78

Can be reduced to positive equations:

Lemma
dJaeX,uedX . r=vy-a-u; or
JaeXueX . y=a-a-u; or
TFy & _ i’
Ja #b€ X, p,u,v e X*.
Theorem

Any Boolean combination of word equations can
be reduced to a single word equation with the
same set of solutions (when projected to the
original set of variables).

2. Acyclic word equations

= Reduce to solved form by systematic
application of Nielsen’s transformation:

ZElztl/\"'/\QZn:tn

(z1,...,z, do not occurin t1,...,t,)

= After that, eliminate equations by
Inlining!

80

3. Regular expressions

= Membership tests with concatenation
can be split:

n
sctel ~ \[seLlintecls
1=1

= Tests with same left-hand side can be
merged:

reLiNx €Ly ~ x€L1NLs

81

3. Regular expressions

= Membership tests with concatenation
can be split:

n
sctel ~ \[seLlintecls
1=1

Disjunction over

» Tests with same left-I states of be
automaton

merged: representing £

reLiNx €Ly ~ x€L1NLs

82

4. Length constraints

= Compute the length abstraction of
each regex constraint:

rel ~ |x|le{|lw||weL}

= Conjoin length abstractions with other
length constraints and check
satisfiability

83

4. Length constraints

= Compute the length abstraction of
each regex constraint:

rel ~ |x|le{|lw||weL}

= Conjoin length abstrac ons with other
length constraints and ‘eck
satisfiability
A Presburger
formula that can

be extracted in
linear time from £ ”

5. Optimisations ...

= E.g., exploit length information when
splitting equations or regexes

(still too slow ...)

85

The Sloth fragments

1. Boolean structure (no negation)
2. Straight-line word equations
3. n-track transducer constraints

Lukas Holik, Petr Janku, Anthony W. Lin, Philipp RUmmer,
Tomas Vojnar: String constraints with concatenation and
transducers solved efficiently. PACMPL 2(POPL): 4:1-4:32 "

(2018)

The Sloth fragments

1. Boolean structure (no negation)
2. Straight-line word equations
3. n-track transducer constraints

— also decidable!

Lukas Holik, Petr Janku, Anthony W. Lin, Philipp RUmmer,
Tomas Vojnar: String constraints with concatenation and
transducers solved efficiently. PACMPL 2(POPL): 4:1-4:32 .

(2018)

88

Conclusions:

Are we there vet?

Expressiveness

Efficiency Precision/
guarantees

« Parosh Aziz Abdulla = Petr Janku
= Mohamed Faouzi = Anthony W. Lin

Atig = Ahmed Rezine
= Yu-Fang Chen = Jari Stenman
= Bui Phi Diep

* Tomas Vojnar
= Lukas Holik

= and others

90

Further topics

= The SMT-LIB standard for strings
(work In progress ...)

= Solver applying under- and over-
approximations

= Context-free grammars
= Model counting

93

	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page4 (6)
	page4 (7)
	page4 (8)
	page4 (9)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page10 (1)
	page10 (2)
	page10 (3)
	Slide 24
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page13 (1)
	page13 (2)
	page13 (3)
	Slide 32
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	page20 (1)
	page20 (2)
	page21 (1)
	page21 (2)
	Slide 46
	page23 (1)
	page23 (2)
	page23 (3)
	Slide 50
	Slide 51
	page26 (1)
	page26 (2)
	page27 (1)
	page27 (2)
	Slide 56
	Slide 57
	Slide 58
	page31 (1)
	page31 (2)
	page32 (1)
	page32 (2)
	page32 (3)
	page32 (4)
	page32 (5)
	page32 (6)
	page32 (7)
	page32 (8)
	page32 (9)
	page32 (10)
	page33 (1)
	page33 (2)
	page33 (3)
	Slide 74
	page35 (1)
	page35 (2)
	page36 (1)
	page36 (2)
	page36 (3)
	Slide 80
	page38 (1)
	page38 (2)
	page39 (1)
	page39 (2)
	Slide 85
	page41 (1)
	page41 (2)
	Slide 88
	Slide 89
	Slide 90
	Slide 93

