CSL soundness

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

EPIT 2018
May 2018

Soundness of concurrent separation logic

Was considered to be quite a difficult topic:
» Reynolds's counterexample:
conjuction rule & imprecise invariants ~» unsoundness.
» Flaw in Brookes's proof

concerning variable sideconditions.

But some standard techniques have emerged:
» Recursively-defined safety predicate;
» Quantifying over the frame resource.

» Applicable to most other concurrent program logics.

More details:

» V. Vafeiadis. Concurrent separation logic and operational
semantics. ENTCS 276: 335-351 (2011)

Sequential language

E:=x|n|E+E|E-E|...

B:=BAB|-B|E=E|E<E]...

C:=skip| x:=E|x:=[E]|[E]:=E | x := alloc(E) | free(E)
| Ci; Gy | if B then G else G, | while B do C

» Small-step operational semantics:

(C,s,h) — (C',s', H) (C,s, h) — abort
s - Stack % VarName — Val
h: Heap 2f) 6c — Val

» Rules for sequential composition:

(Ci,s,h) = (G, s, H)

kip; C,s,h) — (C,s, h
(s Ipv 75’) - (’57) (Clv C‘27S7 h) _> (C:{y C27S/7 h/)

Parallel composition

Cu=...1G|G
> Interleaving semantics:

(Ci,s,h) — (Ci, s,) (G, s, h) — (G, ',)

(Gl Gys, h) — (GG, s,) (Gl CG,s, h) — (G| G, 8",)
» Abort semantics:

(Ci,s,h) — abort (G, s, h) — abort
(C1|| G, s, h) — abort (G| G, s, h) — abort

» Termination:

(skip||skip, s, h) — (skip, s, h)

Atomic blocks

C == ... | atomic C

> Atomic blocks execute in one step

(C,s, h) —* (skip,s’, H)
(atomic C,s, h) — (skip, s, i)

(C,s, h) —* abort
(atomic C,s, h) — abort

» Normally, also need a rule such as

(C,s,h) =¥

(atomic C,s, h) — (atomic C,s, h)

for atomic blocks that don't terminate

Multiple resources

» Lock declarations & conditional critial regions (CCRs)

C ::=...| resource r in C | with r when B do C
| within r do C

» Enter a CCR
[Bl(s

)
(with r when B do C,s, h) — (within r do C,s, h)
» Execute body of a CCR

(C,s,h) = (C',s', H) r ¢ Locked(C")
(within r do C,s, h) — (within r do C', s, i)

» Exit the CCR

(within r do skip, s, h) — (skip, s, h)

Rules for parallel composition

(Ci,s,h) — (Ci,s',) (Ca,s,h) — (G, 8",)
Locked(C{) N Locked(Cy) = () Locked(Cy) N Locked(Ch) = 0
(GG, s h) = (GG, s) (GllGys, h) = (GG, s, i)

where

Locked(C) % {r | 3C’. (within r do C') is a subterm of C}

Ensures that commands are well-formed:

wf (skip) 4 true

wf(Cr; G) & wf(Cy) A wF(G) A (Locked(Go) =)
wf(C1|) & wr(C) A wf(Go) A (Locked(Cy) N Locked(Go) = 0)
wf(with r when B do C) & wf(C) A (Locked(C) = 0)

wf (within r do C) % wf(C) A r ¢ Locked(C)

Some proof rules

FE{P1}C{@} A([, P, C, Q) Nwr(G) =0

M= {P2}C2{QZ} fv(F, PQ,CQ,QZ)ﬂwr(Cl) =0 (PAR)
FE{P1*x P} G| G{Q1 * Q2}
Fr={(P+xJ)ANB}C{Q =« J}
F 7 JF (Plwith r when Bdo C(Q] (1T
rr:JE{P}C{Q} v(NHNwr(C)=10

I {P x J}resource r in C{Q x J} (RES)
r-{P}C{Q} fv(R)Nwr(C) =10 (FraviE)

F={PxR}C{Qx* R}

» NB: Draconian variable side-conditions.

Proof rules for atomic blocks

JE{P1}CG{Q1} fv(J, P, G, Q1) Nwr(G) =10
JE{P}G{Q} (U, P2, G, @) Nwr(Cy) =10 (PAR)
JEA{PL* P} G| G{ Q1+ @2}
emp - {P % J}.C{Q * J} (Arom)
J F {P}atomic C{Q}
J*x R {P}C{Q} fv(R)Nwr(C) =10 (SHARE)
JE{P*xR}C{Q* R}
JH{P}C{Q} fv(R)Nwr(C) =10 (Frase)

J+{P«R}C{Q+* R}

Hoare triples (partial correctness)

={Prc{Q}
if and only if
Vshs'h.s,hi=P A (C,s, h) =* (skip,s',h') = s, = Q

if and only if
Vsh.s,hE P =
(Vs'H. (C,s, h) =* (skip,s’, h') = s',h E Q)

if and only if
Vsh.s,h=P =
(Ym. Vs'H. (C,s, h) =™ (skip,s’, ') = s, E Q)

if and only if
Vshn.s,hEP =
(Vm < n.Vs'H.(C,s, h) =™ (skip,s’, h') = s/, = Q)

10

Configuration safety
EA{P}C{Q} iff Vshn.s,h = P = safe,(C,s, h, Q)

where

safen(C,s, h, Q) def

(Vm < n.Vs'H.(C,s,h) =™ (skip,s’,h') = s, 0 = Q)

As an inductive definition:

safeg(C, s, h, Q) = true
safen+1(C,s,h, Q) =
(C=skip = s,h=Q)
AN(VC's'H. (C,s,h) — (C' s’ H)
— safe,(C',s', I, Q))

11

Configuration safety

EA{P}C{Q} iff Vshn.s,h = P = safe,(C,s, h, Q)

safeg(C, s, h, Q) 2 e

safens1(C, s, h, Q) &

(C=skip = s,hEQ)
AN(NVC's"H. (C,s,h) — (C',s',K)
= safe,(C',s', I, Q))

12

Fault-avoidance

EA{P}C{Q} iff Vshn.s,h = P = safe,(C,s, h, Q)

safeg(C, s, h, Q) 2 e

safens1(C, s, h, Q) &

(C=skip = s,hEQ)
A (= (C,s, h) — abort)
AN(NVC's"H.(C,s,h)— (C',s', K
= safe,(C’,s',H, Q))

> “Well-specified programs don’t go wrong."

13

“Bake in"” the frame rule

EA{P}C{Q} iff Vshn.s,h = P = safe,(C,s, h, Q)

safeg(C, s, h, Q) 2 e
safens1(C, s, h, Q) &

(C=skip = s,hEQ)
VAN (th - (C, S, hH’JhF) — abort)
A (Vhe C's'H. (C,s, hdhp) — (C',s', H)
— Jh'. W = h'W hp Asafe,(C, s, ', Q))
» No safety monotonicity & frame property
» Same definition works for permissions (& ~ addition of
permission-heaps)

14

Atomic blocks

JEA{P}IC{Q} iff Vshn.s,h|= P = safe,(C,s, h, J.Q)

safeg(C, s, h, J,Q) 4 e

SafenJrl(Cv s, h, J’Q) déf

(C=skip = s,hEQ)
A (Vhy hp. s, hy = J = —(C,s, hdhy & hp) — abort)
N (VhJ hp C's' K. (C, s, hwhy W hF) — (C/,Sl, h/)

A s, hy |: J
— 3K, W = WK, W hy
VAN S./ h(/] |: J

Nsafe,(C',s' 0, J.Q))
» Add heap hj satisfying the resource invariant, J.

» Resource invariant must be re-established in h’F.

15

Multiple resources

= {P}C{Q} iff Yshn.s,h = P = safe,(C,s,h,I, Q)

safeg(C,s, h, I, Q) 2 e

safen+1(C,s,h, T, Q) def
(C=skip = s,hEQ)

A (Yhg. =(C,s, h¥ hp) — abort)

N (VhJ hp C's' K. (C, s,h¥ hy hF) — (C/,S/7 h/)
A s, hy = ®repocked(C)\Locked(C) T (1)

= 3N hy. W =h"wh)yhp

N's, hf] ': <>jk)reLocked(C)\Locked(C/) r(r)
Nsafe,(C', s’ 0" T, Q))

» Assume res. invariant satisfied only for acquired locks (hy).

» Ensure res. invariant satisfied for released locks (hf).

16

The conjunction rule & precision

JEA{P1}C{@} JEA{P}C{Q} J precise
JEA{PLAP}C{Q1 N Q}

safe,(C,s, h,J, Q1) Asafe,(C,s, h,J, Q) = safe,(C,s, h,J, Q1AQ)

Recall:
safenr1(C,s,h, J,Q) = ... A (V... =
an” h’. H=h"wh UhF N s, hyl=d Nsafen(C', s’ 07, J, Q))
Inductive step:
1. 3nt bt W=hlwhlwhp A s, ht=J Asafe,(C',s', b, J, Q)
2. 3h? k2. W=h2wh3whg A s, h3=J A safen(C' s’ b2, J, Q)
and since J is precise, h} = h3, and hence h! = h?

def

17

