
CSL soundness

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

EPIT 2018
May 2018

1



Soundness of concurrent separation logic

Was considered to be quite a difficult topic:
I Reynolds’s counterexample:

conjuction rule & imprecise invariants ; unsoundness.
I Flaw in Brookes’s proof

concerning variable sideconditions.

But some standard techniques have emerged:
I Recursively-defined safety predicate;
I Quantifying over the frame resource.
I Applicable to most other concurrent program logics.

More details:
I V. Vafeiadis. Concurrent separation logic and operational

semantics. ENTCS 276: 335-351 (2011)

2



Sequential language

E ::= x | n | E + E | E − E | . . .
B ::= B ∧ B | ¬B | E = E | E ≤ E | . . .
C ::= skip | x := E | x := [E ] | [E ] := E | x := alloc(E ) | free(E )

| C1; C2 | if B then C1 else C2 | while B do C

I Small-step operational semantics:

(C , s, h)→ (C ′, s ′, h′) (C , s, h)→ abort
s : Stack def= VarName→ Val

h : Heap def= Loc ⇀ Val

I Rules for sequential composition:

(skip; C , s, h)→ (C , s, h) (C1, s, h)→ (C ′1, s ′, h′)
(C1; C2, s, h)→ (C ′1; C2, s ′, h′)

3



Parallel composition

C ::= . . . | C1‖C2

I Interleaving semantics:

(C1, s, h)→ (C ′1, s ′, h′)
(C1‖C2, s, h)→ (C ′1‖C2, s ′, h′)

(C2, s, h)→ (C ′2, s ′, h′)
(C1‖C2, s, h)→ (C1‖C ′2, s ′, h′)

I Abort semantics:

(C1, s, h)→ abort
(C1‖C2, s, h)→ abort

(C2, s, h)→ abort
(C1‖C2, s, h)→ abort

I Termination:

(skip‖skip, s, h)→ (skip, s, h)

4



Atomic blocks

C ::= . . . | atomic C

I Atomic blocks execute in one step

(C , s, h)→∗ (skip, s ′, h′)
(atomic C , s, h)→ (skip, s ′, h′)

(C , s, h)→∗ abort
(atomic C , s, h)→ abort

I Normally, also need a rule such as

(C , s, h)→ω

(atomic C , s, h)→ (atomic C , s, h)

for atomic blocks that don’t terminate

5



Multiple resources

I Lock declarations & conditional critial regions (CCRs)

C ::= . . . | resource r in C | with r when B do C
| within r do C

I Enter a CCR

[[B]](s)
(with r when B do C , s, h)→ (within r do C , s, h)

I Execute body of a CCR

(C , s, h)→ (C ′, s ′, h′) r /∈ Locked(C ′)
(within r do C , s, h)→ (within r do C ′, s ′, h′)

I Exit the CCR

(within r do skip, s, h)→ (skip, s, h)

6



Rules for parallel composition

(C1, s, h)→ (C ′1, s ′, h′)
Locked(C ′1) ∩ Locked(C2) = ∅
(C1‖C2, s, h)→ (C ′1‖C2, s ′, h′)

(C2, s, h)→ (C ′2, s ′, h′)
Locked(C1) ∩ Locked(C ′2) = ∅
(C1‖C2, s, h)→ (C1‖C ′2, s ′, h′)

where

Locked(C) def= {r | ∃C ′. (within r do C ′) is a subterm of C}

Ensures that commands are well-formed:

wf (skip) def= true
wf (C1; C2) def= wf (C1) ∧ wf (C2) ∧ (Locked(C2) = ∅)
wf (C1‖C2) def= wf (C1) ∧ wf (C2) ∧ (Locked(C1) ∩ Locked(C2) = ∅)
wf (with r when B do C) def= wf (C) ∧ (Locked(C) = ∅)
wf (within r do C) def= wf (C) ∧ r /∈ Locked(C)

7



Some proof rules

Γ ` {P1}C1{Q1} fv(Γ, P1, C1, Q1) ∩ wr(C2) = ∅
Γ ` {P2}C2{Q2} fv(Γ, P2, C2, Q2) ∩ wr(C1) = ∅

Γ ` {P1 ∗ P2}C1‖C2{Q1 ∗ Q2}
(Par)

Γ ` {(P ∗ J) ∧ B}C{Q ∗ J}
Γ, r : J ` {P}with r when B do C{Q}

(With)

Γ, r : J ` {P}C{Q} fv(J) ∩ wr(C) = ∅
Γ ` {P ∗ J}resource r in C{Q ∗ J}

(Res)

Γ ` {P}C{Q} fv(R) ∩ wr(C) = ∅
Γ ` {P ∗ R}C{Q ∗ R}

(Frame)

I NB: Draconian variable side-conditions.

8



Proof rules for atomic blocks

J ` {P1}C1{Q1} fv(J , P1, C1, Q1) ∩ wr(C2) = ∅
J ` {P2}C2{Q2} fv(J , P2, C2, Q2) ∩ wr(C1) = ∅

J ` {P1 ∗ P2}C1‖C2{Q1 ∗ Q2}
(Par)

emp ` {P ∗ J}C{Q ∗ J}
J ` {P}atomic C{Q}

(Atom)

J ∗ R ` {P}C{Q} fv(R) ∩ wr(C) = ∅
J ` {P ∗ R}C{Q ∗ R}

(Share)

J ` {P}C{Q} fv(R) ∩ wr(C) = ∅
J ` {P ∗ R}C{Q ∗ R}

(Frame)

9



Hoare triples (partial correctness)

|= {P}C{Q}

if and only if

∀s h s ′ h′. s, h |= P ∧ (C , s, h)→∗ (skip, s ′, h′) =⇒ s ′, h′ |= Q

if and only if
∀s h. s, h |= P =⇒

(∀s ′ h′. (C , s, h)→∗ (skip, s ′, h′) =⇒ s ′, h′ |= Q)

if and only if
∀s h. s, h |= P =⇒

(∀m. ∀s ′ h′. (C , s, h)→m (skip, s ′, h′) =⇒ s ′, h′ |= Q)

if and only if
∀s h n. s, h |= P =⇒

(∀m < n. ∀s ′ h′. (C , s, h)→m (skip, s ′, h′) =⇒ s ′, h′ |= Q)
10



Configuration safety

|= {P}C{Q} iff ∀s h n. s, h |= P =⇒ safen(C , s, h, Q)

where

safen(C , s, h, Q) def=
(∀m < n. ∀s ′ h′. (C , s, h)→m (skip, s ′, h′) =⇒ s ′, h′ |= Q)

As an inductive definition:

safe0(C , s, h, Q) = true
safen+1(C , s, h, Q) =

(C = skip =⇒ s, h |= Q)
∧ (∀C ′ s ′ h′. (C , s, h)→ (C ′, s ′, h′)

=⇒ safen(C ′, s ′, h′, Q))

11



Configuration safety

|= {P}C{Q} iff ∀s h n. s, h |= P =⇒ safen(C , s, h, Q)

safe0(C , s, h, Q) def= true
safen+1(C , s, h, Q) def=

(C = skip =⇒ s, h |= Q)
∧ (∀C ′ s ′ h′. (C , s, h)→ (C ′, s ′, h′)

=⇒ safen(C ′, s ′, h′, Q))

12



Fault-avoidance

|= {P}C{Q} iff ∀s h n. s, h |= P =⇒ safen(C , s, h, Q)

safe0(C , s, h, Q) def= true
safen+1(C , s, h, Q) def=

(C = skip =⇒ s, h |= Q)
∧ (¬ (C , s, h)→ abort)
∧ (∀C ′ s ′ h′. (C , s, h)→ (C ′, s ′, h′)

=⇒ safen(C ′, s ′, h′, Q))
I “Well-specified programs don’t go wrong.”

13



“Bake in” the frame rule

|= {P}C{Q} iff ∀s h n. s, h |= P =⇒ safen(C , s, h, Q)

safe0(C , s, h, Q) def= true
safen+1(C , s, h, Q) def=

(C = skip =⇒ s, h |= Q)
∧ (∀hF. ¬ (C , s, h]hF)→ abort)
∧ (∀hF C ′ s ′ h′. (C , s, h]hF)→ (C ′, s ′, h′)

=⇒ ∃h′′. h′ = h′′ ] hF ∧ safen(C ′, s ′, h′′, Q))
I No safety monotonicity & frame property
I Same definition works for permissions (]; addition of

permission-heaps)

14



Atomic blocks

J |= {P}C{Q} iff ∀s h n. s, h |= P =⇒ safen(C , s, h, J ,Q)

safe0(C , s, h, J ,Q) def= true
safen+1(C , s, h, J ,Q) def=

(C = skip =⇒ s, h |= Q)
∧ (∀hJ hF. s, hJ |= J =⇒ ¬(C , s, h]hJ ] hF)→ abort)
∧ (∀hJ hF C ′ s ′ h′. (C , s, h]hJ ] hF)→ (C ′, s ′, h′)

∧ s, hJ |= J
=⇒ ∃h′′ h′J. h′ = h′′]h′J ] hF

∧ s, h′J |= J
∧ safen(C ′, s ′, h′′, J ,Q))

I Add heap hJ satisfying the resource invariant, J .
I Resource invariant must be re-established in h′F.

15



Multiple resources

Γ |= {P}C{Q} iff ∀s h n. s, h |= P =⇒ safen(C , s, h, Γ, Q)

safe0(C , s, h, Γ, Q) def= true
safen+1(C , s, h, Γ, Q) def=

(C = skip =⇒ s, h |= Q)
∧ (∀hF. ¬(C , s, h ] hF)→ abort)
∧ (∀hJ hF C ′ s ′ h′. (C , s, h ] hJ ] hF)→ (C ′, s ′, h′)

∧ s, hJ |= ~r∈Locked(C ′)\Locked(C) Γ(r)
=⇒ ∃h′′ h′J. h′ = h′′ ] h′J ] hF

∧ s, h′J |= ~r∈Locked(C)\Locked(C ′) Γ(r)
∧ safen(C ′, s ′, h′′, Γ, Q))

I Assume res. invariant satisfied only for acquired locks (hJ).
I Ensure res. invariant satisfied for released locks (h′J).

16



The conjunction rule & precision

J |= {P1}C{Q1} J |= {P2}C{Q2} J precise
J |= {P1 ∧ P2}C{Q1 ∧ Q2}

safen(C , s, h, J , Q1)∧ safen(C , s, h, J , Q2) =⇒ safen(C , s, h, J , Q1∧Q2)

Recall:
safen+1(C , s, h, J , Q) def= . . . ∧ (∀ . . . =⇒

∃h′′ h′J. h′=h′′]h′J]hF ∧ s, h′J|=J ∧ safen(C ′, s ′, h′′, J , Q))
Inductive step:
1. ∃h1 h1

J. h′=h1]h1
J]hF ∧ s, h1

J|=J ∧ safen(C ′, s ′, h1, J , Q)
2. ∃h2 h2

J. h′=h2]h2
J]hF ∧ s, h2

J|=J ∧ safen(C ′, s ′, h2, J , Q)
and since J is precise, h1

J = h2
J, and hence h1 = h2

17


