Separation in Hoare logic: Two important rules

Rule of constancy

{P}C{Q]
(PARIC{QAR]

fV(R) n mod(C) = @

Disjoint parallelism rule

{P1}Cqy{Q1} [P2}Co{Q2} fv(P1,C1,Q1) n mod(Co)
{P1AP2}C1|[Co{Q1 AQ2} fv(P2,C2,Q2) n mod(Cy)

D
D

What about programs with pointers?

Points-to assertions

SL: convenient syntax for describing the heap

ey

q =

nil

[—

10

-

Sfisge

q + 5,ni

r~10,r

heap(p) = 5

heap(g) =5 A
heap(g+1) = nil

Conjunction

Q: What does p —» 5,nil A g+ 5,nil denote?

p\)5

nil

"

p-——"

nil

nil

o+~ 5,nil A p=Q

p—5nl Age-5nlAp#Qg

P+~ 5Nl g~ 5nil

Separating conjunction

5 | nil

o+~ 50 =g~ 5ni

A bigger assertion

d9r. p~»509«qQr0O,rxr—/7,p

Classical vs intuitionistic SL

Classical SL
p=9O

emp

Intuitionistic SL
p+= 9O
emp

P& P o« true

heap(p) =5 A dom(heap) = {p}

dom(heap) = @

heap(p) = 5

true

Inductive definitions: list segments

X=Yy X m— —I—) listseg y

listseg(x,y) <‘§> X=Yy v 3vz X~ VzZxlistseg(z,y)

Q: What does listseg(p,p) denote?

10

Separation logic triples

Just as in Hoare logic...

(P} C{Q}

.. but the precondition must specify all cells the program accesses:

11

Frame rule

Example:

Disjoint concurrency

{P

11 C1{ Q1] [P} Co{Qa} #(P1,C1,Q1) n mod(Co)

{P1 P2} C1||Co{Q1 Q2 } fv(P2,C2,Q2) n mod(Cr)

(Well—specified processes ‘mind their own business’

13

Parallel merge sort

Exercise: Define predicates list(p) and sorted(p).

14

Parallel merge sort

mergesort (p) { local q;

) { : { list(p)) split(p, @) { list(p) = list(q) } :

solit (0, @) T
mergesort (o) || mergesort () ;

merge (o, 9);

f

15

Parallel merge sort

(.04

16

Resource invariants & ownership transfer

17

Resource invariants & ownership transfer

17

Resource invariants & ownership transfer

17

Resource invariants

[r:BRE{P}C{Q]}

[F{Px+R}resourcerinC{Q xR}

F{P+RAB}C{Q*R}

(P
[, r: RI—{P}WlthrwheanoC{Q}

NB: Variable side conditions elided.

Resource declaration

Resource usage

18

Maintaining a data structure invariant

true p = mkList() sorted(p)i

sorted(p): insert(p,v) isorted(p):

sorted(p) ' remove(p,v) :sorted(p):

p := mkList (); resource rr in

with r do insert(p,5)
with r do remove(p,10)

with r do insert(p,7)
with r do insert(p,10)

19

Maintaining a data structure invariant

20

Pointer-transferring buffer

resource buf in

X 1= NEeW ;
with buf when —full do
c = x; full := true

endwith

with buf when full do
y ;= ¢; full ;= false
endwith ;

dispose (y)

21

Pointer-transferring buffer

true true
with b7 when fl do
B | Crr.ndull
with buf wh?_l]:_full do y .= c; full ;= false
X A —full Ve A full
P endwith; |
Co A Tl Y
endwith dispose ()
true . true

22

