
Separation in Hoare logic: Two important rules

Rule of constancy

Disjoint parallelism rule

What about programs with pointers?

{ P } C { Q }
{ P ∧ R } C { Q ∧ R }

fv(R) ∩ mod(C) = ∅

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }
{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 }

fv(P1,C1,Q1) ∩ mod(C2) = ∅
fv(P2,C2,Q2) ∩ mod(C1) = ∅

3

Points-to assertions

SL: convenient syntax for describing the heap

q 5 nil q � 5,nil

r 10 r � 10,r

heap(q) = 5 ∧
heap(q+1) = nil

p 5 p � 5 heap(p) = 5

5

Conjunction

p � 5,nil ∧ p=q

q 5 nil

p 5 nil

p
5 nil

q

Q: What does p � 5,nil ∧ q � 5,nil denote?

p � 5,nil ∧ q � 5,nil ∧ p ≠ q

p � 5,nil ∗ q � 5,nil

6

Separating conjunction

q 5 nil

p 5 nil
p � 5,nil ∗ q � 5,nil

q 5 nil

p 5

p � 5,q ∗ q � 5,nil

7

A bigger assertion

p 5 6 7

∃q r. p � 5,q ∗ q � 6,r ∗ r � 7,p

8

Classical vs intuitionistic SL

Classical SL

 p � 5 heap(p) = 5 ∧ dom(heap) = { p }

 emp dom(heap) = ∅

Intuitionistic SL

 p � 5 heap(p) = 5

 emp true

 P P ∗ true

9

Inductive definitions: list segments

listseg(x,y) x = y ∨ ∃v z. x � v,z ∗ listseg(z,y)

x=y x listseg y

Q: What does listseg(p,p) denote?

def

10

Separation logic triples

Just as in Hoare logic...

 { P } C { Q }

... but the precondition must specify all cells the program accesses:

 { p � 5 } [p] := 10 { p � 10 }

 { p � 5 ∗ q � 6 } [p] := 10 { true }

 { true } [p] := 10 { true }

11

Frame rule

{ P } C { Q }
{ P ∗ R } C { Q ∗ R }

fv(R) ∩ mod(C) = ∅

{ p � 5 ∗ q � 6 } [p] := 10 { p � 10 ∗ q � 6 }

{ p � 5 } [p] := 10 { p � 10 }

Example:

12

Disjoint concurrency

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }
{ P1 ∗ P2 } C1 || C2 { Q1 ∗ Q2 }

Well-specified processes ‘mind their own business’

fv(P1,C1,Q1) ∩ mod(C2) = ∅
fv(P2,C2,Q2) ∩ mod(C1) = ∅

13

Parallel merge sort

mergesort (p) {

 ...

}

{ list(p) } split(p, q) { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }

sorted(p)

Exercise: Define predicates list(p) and sorted(p).

14

Parallel merge sort

mergesort (p) { local q;
 ...
 if (...) {
 split (p, q);
 mergesort (p) || mergesort (q) ;
 merge (p, q);
 }
}

{ list(p) } split(p, q) { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }

sorted(p)

15

Parallel merge sort

mergesort (p) { local q; ...
 if (...) {

 split (p, q);

 mergesort (p) || mergesort (q) ;

 merge (p, q);

} }

{ list(p) } split(p, q) { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }sorted(p)

list(p)

list(p) ∗ list(q)

sorted(p) ∗ sorted(q)

sorted(p)

16

Resource invariants & ownership transfer

 thread 2

lock s

thread 1

lock r

17

Resource invariants & ownership transfer

 thread 2

lock s

thread 1

lock racquire(r) — gain ownership

17

Resource invariants & ownership transfer

 thread 2

lock s

thread 1

lock r
release(r) — give up ownership

17

Resource invariants

Γ ⊢ { (P ∗ R) ∧ B } C { Q ∗ R }
Γ, r: R ⊢ { P } with r when B do C { Q }

Γ, r : R ⊢ { P } C { Q }
Γ ⊢ { P ∗ R } resource r in C { Q ∗ R }

Resource declaration

Resource usage

NB: Variable side conditions elided.

18

Maintaining a data structure invariant

p := mkList()

insert(p,v)

remove(p,v)

sorted(p) sorted(p)

sorted(p) sorted(p)

true sorted(p)

with r do insert(p,5)
with r do remove(p,10)

p := mkList (); resource r in

with r do insert(p,7)
with r do insert(p,10)

true

sorted(p)

end

19

Maintaining a data structure invariant

with r do insert(p,5)

with r do remove(p,10)

p := mkList (); resource r in

with r do insert(p,7)

with r do insert(p,10)

true

sorted(p)

end

sorted(p) true

Resource Invariant: sorted(p)

true

true

true

true

true

true

20

Pointer-transferring buffer

x := new ;

with buf when ¬full do

 c := x; full := true

endwith

with buf when full do

 y := c; full := false

endwith ;

dispose (y)

resource buf in

true

¬full

21

Pointer-transferring buffer

x := new ;

with buf when ¬full do

 c := x; full := true

endwith

with buf when full do

 y := c; full := false

endwith ;

dispose (y)

x � _

x � _ ∧ ¬full

c � _ ∧ full y � _

c � _ ∧ full

true true

y � _ ∧ ¬full

true true

Resource Invariant: ¬full ∨ (c � _ ∧ full)

22

