
TEXT-TO-PATTERN HAMMING DISTANCE
TATIANA STARIKOVSKAYA, MAÎTRE DE CONFÉRENCES ENS ULM

TEXT-TO-PATTERN HAMMING DISTANCE
We are given two strings (= sequences of letters from a finite alphabet): a text of
length and a pattern of length

The task is to compute the Hamming distance (= number of mismatches) between
each - length substring of the text and the pattern

T
n P m ≤ n

m

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 1

2

TEXT-TO-PATTERN HAMMING DISTANCE
We are given two strings (= sequences of letters from a finite alphabet): a text of
length and a pattern of length

The task is to compute the Hamming distance (= number of mismatches) between
each - length substring of the text and the pattern

T
n P m ≤ n

m

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3

3

TEXT-TO-PATTERN HAMMING DISTANCE
We are given two strings (= sequences of letters from a finite alphabet): a text of
length and a pattern of length

The task is to compute the Hamming distance (= number of mismatches) between
each - length substring of the text and the pattern

T
n P m ≤ n

m

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3

4

TEXT-TO-PATTERN HAMMING DISTANCE
We are given two strings (= sequences of letters from a finite alphabet): a text of length
and a pattern of length

The task is to compute the Hamming distance (= number of mismatches) between each -
length substring of the text and the pattern

… and so on. A fundamental problem in algorithms on strings! Naive algorithm: time.

T n
P m ≤ n

m

O(nm)

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 5

5

BEFORE WE START

• I will speak in English, mais je parle français

• I love questions! In English or in French, at any time

• There will be lots of exercises, please participate actively

6

OUTLINE

• Reminder: fast multiplication of polynomials via Fast Fourier Transform

• Exact algorithms for binary and general case

• Lower bound for combinatorial algorithms

• Kangaroo jumps

• Smaller space

• Approximation algorithm

7

REMINDER: FAST MULTIPLICATION OF POLYNOMIALS

Let me start with an algorithm for fast multiplication of polynomials

Half of you probably saw it last year, and half will see it this year

We will use it to compute text-to-pattern Hamming distances; it is also a basis of many
other great algorithms on strings

9

Consider ,

We can compute in time

Computing naively requires time

Fast Fourier Transform: time

P(x) =
n−1

∑
i=0

aixi Q(x) =
n−1

∑
i=0

bixi

R1(x) = P(x) + Q(x) =
n−1

∑
i=0

(ai + bi)xi O(n)

R2(x) = P(x) ⋅ Q(x) =
2n−2

∑
k=0

∑
i+j=k

(ai ⋅ bj)xk O(n2)

O(n log n)

FAST MULTIPLICATION OF POLYNOMIALS

10

FAST MULTIPLICATION OF POLYNOMIALS

11

Coefficient representation:

Point-value representation: such that

Theorem. For any set , where , there exists a unique

polynomial of degree such that for all .

Given point-value representations of and

 of and of , one can compute the point-value

representation of in time

P(x) =
n−1

∑
i=0

aixi

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} P(xi) = yi

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} xi ≠ xj

< n P(xi) = yi i = 0,…, n − 1

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} P(x)
{(x0, y′￼0), (x1, y′￼1), …, (xn−1, y′￼n−1)} P(x) Q(x)

P(x) ⋅ Q(x) O(n)

Proof: in 2 slides

FAST MULTIPLICATION OF POLYNOMIALSFAST MULTIPLICATION OF POLYNOMIALS

an−1, …, a1, a0
bn−1, …, b1, b0

P(w0
2n), Q(w0

2n)
P(w1

2n), Q(w1
2n)

⋮
P(w2n−1

2n), Q(w2n−1
2n)

c2n−2, …, c1, c0
naive multiplication

 timeO(n2)

FFT

 timeΘ(n log n)

point-wise mult.

 timeΘ(n)

R(w0
2n)

R(w1
2n)

⋮
R(w2n−1

2n)

inverse FFT

 timeΘ(n log n)

co
effi

ci
en

t

re

pr
es

en
ta

tio
n

po
in

t-v
al

ue

re
pr

es
en

ta
tio

n

 - -th complex root of unityw2n (2n) 12

FAST MULTIPLICATION OF POLYNOMIALS

Theorem. For any set , where , there exists a unique polynomial of
degree such that for all .

Proof. Let . We can represent the condition for all in the matrix

form:

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} xi ≠ xj
< n P(xi) = yi i = 0,…, n − 1

P(x) =
n−1

∑
i=0

aixi P(xi) = yi i = 0,…, n − 1

1 x0 x2
0 … xn−1

0

1 x1 x2
1 … xn−1

1
⋮ ⋮ ⋮ ⋱ ⋮
1 xn−1 x2

n−1 … xn−1
n−1

a0
a1
⋮

an−1

=

y0
y1
⋮

yn−1

Vandermonde matrix,

determinant = Π0≤i<j≤n−1(xj − xi)

13

COMPLEX ROOTS OF UNITY
wn = 1

w0
8 = w8

8

w1
8

w2
8w3

8

w4
8

w5
8

w6
8

w7
8

wk
n = e2πik/n = cos 2πk/n + i sin 2πk/n

Cancellation property: wdk
dn = wk

n

Halving property: {(w0
2n)

2, (w1
2n)

2, …, (w2n−1
2n)2} = {w0

n , w1
n , …, wn−1

n }

Summation property: for all

n−1

∑
j=0

(wk
n) j = 0 k ≠ 0 (mod n)

14

FAST FOURIER TRANSFORM
discrete Fourier transform (assume)

• Evaluate and at recursively (by the halving property,

)

• Combine the results to compute

P(x) =
i=n−1

∑
i=0

aixi → {P(w0
n), P(w1

n), …, P(wn
n)} n = 2j

P(x) = an−1xn−1 + an−2xn−2 + … + a1x + a0

Podd(x) = an−1xn/2−1 + an−3xn/2−2 + … + a1 Peven(x) = an−2xn/2−1 + an−4xn/2−1 + … + a0

P(x) = xPodd(x2) + Peven(x2)

Podd(x) Peven(x) (w0
n)2, (w1

n)2, …, (wn−1
n)2

{(w0
n)2, (w1

n)2, …, (wn−1
n)2} = {(w0

n/2), (w1
n/2), …, (wn/2−1

n/2)}

{P(w0
n), P(w1

n), …, P(wn
n)}

 T(n) = 2T(n /2) + Θ(n) = O(n log n)

15

FAST MULTIPLICATION OF POLYNOMIALSFAST MULTIPLICATION OF POLYNOMIALS

an−1, …, a1, a0
bn−1, …, b1, b0

P(w0
2n), Q(w0

2n)
P(w1

2n), Q(w1
2n)

⋮
P(w2n−1

2n), Q(w2n−1
2n)

c2n−2, …, c1, c0
naive multiplication

 timeO(n2)

FFT

 timeΘ(n log n)

point-wise mult.

 timeΘ(n)

R(w0
2n)

R(w1
2n)

⋮
R(w2n−1

2n)

inverse FFT

 timeΘ(n log n)

co
effi

ci
en

t

re

pr
es

en
ta

tio
n

po
in

t-v
al

ue

re
pr

es
en

ta
tio

n

 - -th complex root of unityw2n (2n) 16

INVERSE FOURIER TRANSFORM

Point representation

{P(w0
n), P(w1

n), …, P(wn
n)} → P(x) =

i=n−1

∑
i=0

aixi

1 1 1 … 1
1 wn w2

n … wn−1
n

1 w2
n w4

n … w2(n−1)
n

⋮ ⋮ ⋮ ⋱ ⋮
1 wn−1

n w(n−1)2
n … w(n−1)(n−1)

n

a0
a1
a2
⋮

an−1

=

P(w0
n)

P(w1
n)

⋮
P(wn−1

n)

17

Vn

INVERSE FOURIER TRANSFORM

Point representation

{P(w0
n), P(w1

n), …, P(wn
n)} → P(x) =

i=n−1

∑
i=0

aixi

a0
a1
a2
⋮

an−1

= V−1
n ×

P(w0
n)

P(w1
n)

⋮
P(wn−1

n)

18

INVERSE FOURIER TRANSFORM
Theorem.

Proof.

If , the sum equals one. Otherwise, the sum equals zero by Summation property

Corollary. , that is, is a point-value representation of a polynomial

 and can be computed in time using Fast Fourier transform!

V−1
n [j, k] = w−kj

n /n

(V−1
n Vn)[j, j′￼] =

n−1

∑
k=0

(V−1
n)[j, k](Vn)[k, j′￼] =

n−1

∑
k=0

(w−kj
n /n)(wkj

n) =
n−1

∑
k=0

(wk(j′￼−j)
n /n)

j′￼ = j

aj =
1
n

n−1

∑
k=0

P(wk
n)w−kj

n {aj}

Q(z) =
n−1

∑
k=0

ykzk O(n log n)

19

TWO POLYNOMIALS OF DEGREE AT MOST CAN BE MULTIPLIED IN TIMEn O(n log n)

20

ALL TEXT-TO-PATTERN HAMMING DISTANCES

PROBLEM FORMULATION

We are given two strings (= sequences of letters from a finite alphabet: a text of length
 and a pattern of length

The task is to compute the Hamming distance (= number of mismatches) between each
-length substring of the text and of the pattern

T
n P m ≤ n

m

22

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3

CONSTANT-SIZE ALPHABETS

Our task is to develop an algorithm with running time .

Given two integer vectors of lengths and , , their convolution is defined as a vector of length

, where . Show an -time algorithm for computing the convolution.

Given binary text of length and pattern of length . For a substring of the text, express the
number of matching ones between it and in terms of a convolution. What about the number of matching
zeros and the Hamming distance?

Derive a -time algorithm for computing the Hamming distances between all -length substrings of
binary and and a -time algorithm for strings over an alphabet of size .

O(n log m)

A, B n m n ≥ m C

n − m C[i] =
m

∑
j=1

A[i + m − j]B[j] O(n log m)

T n P m T[i − m + 1,i]
P

O(n log n) m
T P O(σn log n) σ

FISHER AND PATERSON’74

23

Let’s now develop an algorithm with running time !

• Let’s assume that for starters. A letter of is called frequent if it occurs at
least times. Number of frequent letters is .

• How to compute the number of mismatches due to frequent letters in
 time?

O(n m log m)

n = 2m T
m log m ≤ 2 m/log m

O(m m log m)

GENERAL ALPHABETS
ABRAHAMSON’87

24

Our task is to develop an algorithm with running time .

• For each position of such that is not frequent mark at most positions in

the text where and its occurrence in the text are aligned.

O(n m log m)

i P P[i] m log m
P[i]

i

GENERAL ALPHABETS
ABRAHAMSON’87

25

Our task is to develop an algorithm with running time .

• For each position of such that is not frequent mark at most positions in

the text where and its occurrence in the text are aligned.

O(n m log m)

i P P[i] m log m
P[i]

i

GENERAL ALPHABETS
ABRAHAMSON’87

26

Our task is to develop an algorithm with running time .

• For each position of such that is not frequent mark at most positions in

the text where and its occurrence in the text are aligned.

O(n m log m)

i P P[i] m log m
P[i]

i

GENERAL ALPHABETS
ABRAHAMSON’87

27

Our task is to develop an algorithm with running time .

• For each position of such that is not frequent mark at most positions in

the text where and its occurrence in the text are aligned. Total time: .

• We can use the marks to compute the number of mismatches due to non-frequent letters

O(n m log m)

i P P[i] m log m
P[i] O(m m log m)

i

GENERAL ALPHABETS
ABRAHAMSON’87

28

• We can sum up the mismatches due to frequent and non-frequent letters in
time.

• This gives a -time algorithm for the case .

• Derive an -time algorithm for general .

O(m)

O(m m log m) n = 2m

O(n m log m) n

GENERAL ALPHABETS
ABRAHAMSON’87

29

ALL HAMMING DISTANCES:

 TIME FOR CONSTANT-SIZE ALPHABET AND IN GENERAL O(n log m) O(n m log m)

BIG OPEN QUESTION: IS THERE A
FASTER ALGORITHM?

LOWER BOUND

COMBINATORIAL MATRIX MULTIPLICATION

33

Conjecture. For any , there is no combinatorial algorithm for multiplying an
 matrix with an matrix in time .

NB! It is not clear what does combinatorial mean precisely. However, FFT and so boolean
convolution often used in algorithms on strings are considered not to be combinatorial.

α, β, γ, ε > 0
nα × nβ A nβ × nγ B O(nα+β+γ−ε)

ENCODING MATRICES
0 1 1 0

1 0 1 0

0 0 0 1

1 1 1 0

0 1 1 1

1 0 1

1 1 0

1 0 1

1 0 0

?
Replace every 1 in column of with and every 1 in row of with
j A j i B i

M N

N
L

34

M ≥ N ≥ L

ENCODING MATRICES
0 2 3 0

1 0 3 0

0 0 0 4

1 2 3 0

0 2 3 4

1 0’ 1

2 2 0’

3 0’ 3

4 0’ 0’

?M N

N
L

Replace every 0 in with 0’
B

35

M ≥ N ≥ L

ENCODING MATRICES
0 2 3 0

1 0 3 0

0 0 0 4

1 2 3 0

0 2 3 4

1 0’ 1

2 2 0’

3 0’ 3

4 0’ 0

?M N

N
L

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2

36

M ≥ N ≥ L

ENCODING MATRICES
0 2 3 0#N2

1 0 3 0 0 0 0 4 1 2 3 0 0 2 3 4

1 2 3 4 0’ 2 0’ 0’ 1 0’ 3 0’

#N2

37

#

#

For the sake of example, let’s recall that and .

What can we say about the Hamming distance at a particular alignment of and ?

N = 4 L = 3

T P

N − L N − L

N − L + 1 N − L + 1 N − L + 1 N − L + 1

ENCODING MATRICES
0 2 3 0#N2

1 0 3 0 0 0 0 4 1 2 3 0 0 2 3 4 #N2

38

#

For the sake of example, let’s recall that and .

What can we say about the Hamming distance at a particular alignment of and ?

N = 4 L = 3

T P

N − L + 1 N − L + 1 N − L + 1 N − L + 1

1 2 3 4 0’ 2 0’ 0’ 1 0’ 3 0’# #

N − L N − L

ENCODING MATRICES
0 2 3 0#N2

1 0 3 0 0 0 0 4 1 2 3 0 0 2 3 4 #N2

39

#

For the sake of example, let’s recall that and .

What can we say about the Hamming distance at a particular alignment of and ?

N = 4 L = 3

T P

N − L + 1 N − L + 1 N − L + 1 N − L + 1

1 2 3 4 0’ 2 0’ 0’ 1 0’ 3 0’# #

N − L N − L

ENCODING MATRICES

A row of the 1st matrix and a column of the 2nd matrix generate a match iff:

• They are perfectly aligned

• There is such that the th bit of and the th bit of are 1

For any alignment of the pattern and of the text there is at most one aligned row-column
pair (length of a row+padding in the text is , a column+padding in the pattern —)

i j

k k A k B

N + 1 N

40

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2

ENCODING MATRICES

Length of :

Hamming distance =

|non-# letters in | + |non-# letters in a |P|-length substring of | — |matches|

By computing all Hamming distances, we can derive !

P (N − 1)(N − L) + NL = Θ(N2) = |P |

P T ≤ MN

A × B

41

Can be computed in time!O(1)

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2

ENCODING MATRICES

By computing all Hamming distances, we can derive !

Set , . By the CMM conjecture, no combinatorial algorithm can
solve the problem in time!

A × B

|P | = (N − 1)(N − L) + NL = Θ(N2)

|T | = 2N2 + MN + (M − 1)(N − L + 1) = Θ(MN)

M = n1−α/2 N = L = nα/2

n1+α/2−αε = |T | ⋅ |P |1/2−ε

42

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2

BASED ON GAWRYCHOWSKI AND UZNANSKI’18

KANGAROO JUMPS

PROBLEM FORMULATION

Given a text of length and a pattern of length , compute the Hamming distance
between each -length substring of and

T n P m
m T P

44

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3

PROBLEM FORMULATION

Given a text of length and a pattern of length , compute the Hamming distance
between each -length substring of and

T n P m
m T P

45

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3

PROBLEM FORMULATION

Given a text of length , a pattern of length , and an integer k, compute the
minimum of k+1 and the Hamming distance between each m-length substring of and

T n P m
T P

46

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

min(2, HD) = 2

PROBLEM FORMULATION

In other words, if the Hamming distance between a substring and the pattern

• , then we must output

• otherwise, we can simply output , which means that “the distance is too large”

Makes perfect sense in practice: why would you be interested in substrings that are too
far from your pattern?

This variant of the problem is called the -mismatch problem

d

≤ k d

k + 1

k

47

Suffix tree

© Sergey Konotoptsev

Dictionary = set of strings

Trie for is a tree. Every edge of the trie is labeled with a letter so that:

• For every node, outgoing edges are labeled with different letters.

• For every string , there is a root-to-node path that spells out
. The end of the path is labeled with the id of .

• Every root-to-leaf path spells out a string from .

• Space = O(total length of strings in)

D

D

S ∈ D
S S

D

D

TRIE
a

a

a

b

c

b

c

c

c

1 2 3

4

1 2 3 4

a

Example: D = {abc, bca, bcc, caa}
49

COMPACT TRIE
a

a

a

b

c

b

c

c

c

1 2 3

4

a
a

a

a

b
c

b
c

c

c

1 2 3

4

a

trie compact trie

50

banana$

na

na$

$

$

$

a

na

na$

1

2

3

4

5

6

T[3..]$ = "nana$"

T[5..]$ = "na$"

T[1..]$ = "banana$"

T[2..]$ = "anana$"

T[4..]$ = "ana$"

T[6..]$ = "a$"

Suffixes of a string T = banana:

T[1,6] = banana

T[2,6] = anana

T[3,6] = nana

T[4,6] = ana

T[5,6] = na

T[6,6] = a

We append $ to each of the suffixes and build the compact trie for them.

SUFFIX TREE

51

SUFFIX TREE

banana$

na

na$

$

$

$

a

na

na$

1

2

3

4

5

6

T[3..]$ = "nana$"

T[5..]$ = "na$"

T[1..]$ = "banana$"

T[2..]$ = "anana$"

T[4..]$ = "ana$"

T[6..]$ = "a$"

[5,6]

[3,4]

 [1,6]

[2,2]

[3,4]

[5,6]

this is the final suffix tree!

T = banana

Storing the labels on the edges can take space.

To save the space, we represent each label as two numbers:
the left and the right endpoints of the label in .

Number of leaves:

Number of nodes:

Number of edges:

Θ(|T |2)

T

|T |

≤ 2 |T | − 1

≤ 2 |T | − 2

52

SUFFIX TREE

banana$

na

na$

$

$

$

a

na

na$

1

2

3

4

5

6

T[3..]$ = "nana$"

T[5..]$ = "na$"

T[1..]$ = "banana$"

T[2..]$ = "anana$"

T[4..]$ = "ana$"

T[6..]$ = "a$"

[5,6]

[3,4]

 [1,6]

[2,2]

[3,4]

[5,6]

this is the final suffix tree!

T = banana

Can be built in time for any alphabet [Farach’97]

Exercise: How much time do we need to build a tree that
contains suffixes of the text and the pattern ?

O(|T |)

T P

53

LOWEST COMMON ANCESTORS

u v

LCA(u, v)

A tree of size can be processed in time
 to support lowest common ancestor

(LCA) queries in constant time. [Fischer,
Hein’06]

 must return the lowest node that is
an ancestor of both and .

O(n)
O(n)

LCA(u, v)
u v

54

KANGAROO JUMPS
i

How to decide if the Hamming distance between and at position is at most ?

Imagine that there is an oracle that tells us the maximum such that
 in time.

Exercise: using the oracle, the question above can be solved in time.

P T i k

ℓ
T[k, k + ℓ] = P[j, j + ℓ] O(1)

O(k)

55

KANGAROO JUMPS
i

How to decide if the Hamming distance between and at position is at most ?

Imagine that there is an oracle that tells us the maximum such that
 in time.

Exercise: using the oracle, the question above can be solved in time.

P T i k

ℓ
T[k, k + ℓ] = P[j, j + ℓ] O(1)

O(k)

56

KANGAROO JUMPS
i

How to decide if the Hamming distance between and at position is at most ?

Imagine that there is an oracle that tells us the maximum such that
 in time.

Exercise: using the oracle, the question above can be solved in time.

Exercise: implement the oracle using suffix trees.

P T i k

ℓ
T[k, k + ℓ] = P[j, j + ℓ] O(1)

O(k)

57

KANGAROO JUMPS

• time and space to build the suffix tree containing the suffixes
of the pattern and the text

• time to preprocess it for lowest common ancestor queries

• time per position to compute

• time and space in total!

O(n + m) = O(n)

O(n + m) = O(n)

O(k) min(k + 1,Ham)

O(nk) O(n)

58

K-MISMATCH

TIME , SPACE O(nk) O(n)

ARE THERE FASTER ALGORITHMS?

60

O(n k log k)

O((n + n
m

⋅ k3 log k))

O((n + n
m

⋅ k2) polylogn)

O((m log2 m log |Σ | + k m log m) ⋅ n /m)

O(n + n
m

⋅ k2 log log k)

Time

Amir et al.’04

Amir et al.’04

Clifford et al.’16

Gawrychowski and Uznański’18

Charalampoupoulos et al.’20

 sp
ac

e!
O

(n
)

ARE THERE FASTER ALGORITHMS?

61

O(n k log k)

O((n + n
m

⋅ k3 log k))

O((n + n
m

⋅ k2) polylogn)

O((m log2 m log |Σ | + k m log m) ⋅ n /m)

O(n + n
m

⋅ k2 log log k)

Time

Amir et al.’04

Amir et al.’04

Clifford et al.’16

Gawrychowski and Uznański’18

Charalampoupoulos et al.’20

 sp
ac

e!
O

(n
)

AMIR ET AL.’04

• Small alphabet: Number of different characters in the pattern is at most

• Medium-size alphabet: Number of different characters in the pattern is in

• Large alphabet: Number of different characters in the pattern is at least

2 k

[2 k + 1,2k)

2k

 TIMEO(n k log m)

62

AMIR ET AL.’04

• Small alphabet: Number of different characters in the pattern is at most

• Medium-size alphabet: Number of different characters in the pattern is in

• Large alphabet: Number of different characters in the pattern is at least

2 k

[2 k + 1,2k)

2k

 time

(convolutions)

O(n k log m)

 TIMEO(n k log m)

63

AMIR ET AL.’04

Large alphabet: Number of different symbols in the pattern is at least

Let be distinct characters in the pattern, and be the positions where they appear first in
the pattern

For each , : if , mark

Discard all text locations with less than marks

2k

a1, a2, …, a2k i1, i2, …, i2k

i 1 ≤ i ≤ n ti = aj m + i − ij

k

 TIMEO(n k log m)

a1 a2 a3 a2k…
i1 i2 i3 i2k

a1 a2 a3 a2k…
i1 i2 i3 i2k

a2 …

64

AMIR ET AL.’04

Large alphabet: Number of different symbols in the pattern is at least

For each , : if , mark

Discard all text locations with less than marks

Total number of marks is , hence the number of non-discarded positions is

The endpoint of every -mismatch occurrence must have at least marks

Verification of non-discarded positions: time using kangaroo jumps

2k

i 1 ≤ i ≤ n ti = aj m + i − ij

k

n O(n/k)

k k

O(
n
k

⋅ k) = O(n)

 TIMEO(n k log m)

a1 a2 a3 a2k…
i1 i2 i3 i2k

a2 …

65

AMIR ET AL.’04

Medium-size alphabet: Number of different characters in the pattern is in

A character that appears in the pattern at least times is called frequent

We consider two subcases:

• Number of frequent characters is at least

• Number of frequent characters is less than

[2 k + 1,2k)

2 k

k

k

 TIMEO(n k log m)

66

AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least times) characters is at least

Exercise: show that the number of -mismatch occurrences is

2 k k

k O(n/ k)

 TIMEO(n k log m)

67

AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least times) characters is at least

Exercise: show that the number of -mismatch occurrences is

• Hint 1: Use marks and the pigeonhole principle!

2 k k

k O(n/ k)

 TIMEO(n k log m)

68

AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least times) characters is at least

Exercise: show that the number of -mismatch occurrences is

• Hint 1: Use marks and the pigeonhole principle!

• Hint 2: Choose frequent characters, and for each of them occurrences in the
pattern

2 k k

k O(n/ k)

k 2 k

 TIMEO(n k log m)

69

AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least times) characters is at least

Exercise: show that the number of -mismatch occurrences is

• We have possible locations of -mismatch occurrences (locations with marks!)

• Each of them can be verified in time via kangaroo jumps (in total)

Yes, but how do we find locations with marks?!! Let’s see…

2 k k

k O(n/ k)

O(n/ k) k ≥ k

O(k) O(n k)

≥ k

 TIMEO(n k log m)

70

AMIR ET AL.’04

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1,
and all other characters with 0

What can we say about the number of marks at a particular location?

How to compute this number?

 TIMEO(n k log m)

0 0 1 0 1 1 0 … 0 1 0 0
i1 i2 i3 i2k

0 0 0 1 1 0 … 0 1 1 0

71

AMIR ET AL.’04

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1,
and all other characters with 0

What can we say about the number of marks at a particular location? (# of matching ones!)

How to compute this number? (Use convolutions, time)O(n log m)

 TIMEO(n k log m)

0 0 1 0 1 1 0 … 0 1 0 0
i1 i2 i3 i2k

0 0 0 1 1 0 … 0 1 1 0

72

AMIR ET AL.’04

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1,
and all other characters with 0

What can we say about the number of marks at a particular location? (# of matching ones!)

How to compute this number? (Use convolutions, time)O(n log m)

 TIMEO(n k log m)

0 0 1 0 1 1 0 … 0 1 0 0
i1 i2 i3 i2k

0 0 0 1 1 0 … 0 1 1 0 Marking step takes timeO(n k log m)

73

AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least times) characters is less than

• Mismatches caused by frequent characters can be computed in time
(similar to the marking step we have just seen)

• We must “only” compute the mismatches due to non-frequent characters…

A. Total number of occurrences of such characters is at least

B. Total number of occurrences of such characters is less than

2 k k

O(n k log m)

2k

2k

 TIMEO(n k log m)

74

AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least times) characters is less than

• Mismatches caused by frequent characters can be computed in time
(similar to the marking step we have just seen)

• We must “only” compute the mismatches due to non-frequent characters…

A. Total number of occurrences of such characters is at least

B. Total number of occurrences of such characters is less than

2 k k

O(n k log m)

2k

2k

 TIMEO(n k log m)

Similar to the large
alphabets!

75

AMIR ET AL.’04

Mismatches due to non-frequent characters, total number of occurrences

• Sort all non-frequent characters

• Divide them into blocks of size so that one character appears only in one block

• Replace each character with the first character in its block (in the text and in the pattern)

≤ 2k

O(k) 2 k

 TIMEO(n k log m)

a1 a2 a3 aocc…
i1 i2 i3 iocc

…

76

AMIR ET AL.’04

Mismatches due to non-frequent characters, total number of occurrences

• Compute all text-to-pattern distances using convolutions (this accounts for all mismatches when a

text character and a pattern character are in different block) - time!

• For each text character, account for at most mismatches that appear when the character and the

aligned pattern character are in the same block - time!

≤ 2k

O(k)
O(n k log m)

2 k
O(n k log m)

 TIMEO(n k log m)

a1 a2 a3 aocc…
i1 i2 i3 iocc

…

77

K-MISMATCH

TIME , SPACE O(n k log m) O(n)

SMALLER SPACE

EXACT PATTERN MATCHING

0 1 1 10 0 0 11 1 0 10

Given a pattern of length and a text of length , find all occurrences of the pattern in the textm n

1 1 10 0

0

80

EXACT PATTERN MATCHING

• More than 80 algorithms known!

• Implemented in SMART, String Matching Algorithms Research Tool: https://smart-
tool.github.io/smart/

• Today we will discuss the algorithm of Karp and Rabin from 1987

• Again, some of you have probably seen it and some will see this year..

• Promise: I will show you a new, much simpler analysis

81

https://smart-tool.github.io/smart/
https://smart-tool.github.io/smart/

EXACT PATTERN MATCHING
KARP AND RABIN’87

The Karp-Rabin fingerprint of a string is defined as

,

where is a prime and is a random integer in .

It’s a good hash function:

• If , then ;

• If while the lengths of and are equal,

then with high probability (if is large enough).

S = s1s2…sm

φ(s1s2…sm) =
m

∑
i=1

si ⋅ rm−i mod p

p r 𝔽p

S = T φ(S) = φ(T)
S ≠ T S T

φ(S) ≠ φ(T) p

Let’s zoom in…

82

EXACT PATTERN MATCHING
KARP AND RABIN’87

Let , , and be the size of the alphabet. Let ,

where is a constant.

Hence, is a root of , a polynomial over . The number of roots

of this polynomial is at most . The probability of such event is at most .

S = s1s2…sm T = t1t2…tm σ p ≥ max{σ, nc}
c > 1

φ(S) = φ(T) ⇔
m

∑
i=1

(si − ti) ⋅ rm−i mod p = 0

r P(x) =
m

∑
i=1

(si − ti) ⋅ xm−i 𝔽p

m m/p ≤ 1/nc−1

83

EXACT PATTERN MATCHING
KARP AND RABIN’87

• Compute the fingerprint of the pattern.

• Compare it with the fingerprint of each -length substring of the text. If the
fingerprint of the pattern is equal to the fingerprint of a substring, report it as
an occurrence.

• The algorithm never misses an occurrence (no false-negatives)

• False-positives can happen with probability at most

m

1/nc−1

84

EXACT PATTERN MATCHING
KARP AND RABIN’87

How to compute the fingerprints?

Therefore, .

We can compute the fingerprint of the -th -length substring of the text from the
fingerprint of the -th substring in space and time.

Karp-Rabin algorithm: extra space, time per letter of the text

φ(s1s2…sm) =
m

∑
i=1

si ⋅ rm−i mod p

φ(s2…sm+1) =
m

∑
i=1

si+1 ⋅ rm−i mod p

φ(s2…sm+1) = (φ(s1s2…sm) − s1 ⋅ rm−1) ⋅ r + sm+1 mod p

(i + 1) m
i O(1) O(1)

O(1) O(1)

This is why it’s “rolling”!

85

1-MISMATCH

86

BASED ON PORAT AND PORAT’09

For a string , define a string
X Xq
r = X[q]X[q + r]X[q + 2r]…

a b c

X3
4 = abc

1-MISMATCH

87

BASED ON PORAT AND PORAT’09

• Consider two strings of length

• is the set of smallest prime numbers. By the prime number theorem,

• For each consider substrings

X, Y m

Q log m
max Q ≤ c ⋅ log m log log m

q ∈ Q, r ∈ 𝔽q Xr
q, Yr

q

1-MISMATCH

88

BASED ON PORAT AND PORAT’09

• If , what can we say about the number of mismatching pairs ?

• And if the Hamming distance between is one?

• What if it is at least two?

X = Y Xr
q, Yr

q

X, Y

1-MISMATCH

89

BASED ON PORAT AND PORAT’09

Lemma. If the Hamming distance between is at least two, then for some
 there exist such that and .

Proof. Let be the mismatch positions. If , then
. However, and . The claim follows!

X, Y
q ∈ Q r1, r2 ∈ 𝔽p, r1 ≠ r2 Xr1

q ≠ Yr1
q Xr2

q ≠ Yr2
q

m1 < m2 m1 = m2 = r (mod q)
m2 − m1 ⋮ q m ≥ m2 − m1 Πq∈Qq > m

1-MISMATCH

90

BASED ON PORAT AND PORAT’09

• Assume someone tells you which pairs are equal.

• How can you use this to deduce whether the Hamming distance between
 is one? Can you also deduce the mismatch position?

Xr
q, Yr

q

X, Y

1-MISMATCH

91

BASED ON PORAT AND PORAT’09

• Let’s go back to computing text-to-pattern distances…

• For every run the Karp-Rabin algorithm for and

• This algorithm tells, for every -length substring , whether

• Time , (extra) space , error probability

q ∈ Q, r1, r2 ∈ 𝔽q Tr1
q Pr2

q

m S Sr
q = Pr

q

n ⋅ polylog m polylog m 1/nc

K-MISMATCH

92

BASED ON PORAT AND PORAT’09

• Consider two strings of length

• is the set of smallest prime numbers. By the prime number
theorem,

• For each consider substrings

X, Y m

Q k2 log m
max Q ≤ c ⋅ k2 log m log log m

q ∈ Q, r ∈ 𝔽q Xr
q, Yr

q

K-MISMATCH

93

BASED ON PORAT AND PORAT’09

Lemma. Let , , be mismatch positions between . For a fixed i

and all there exists such that .

Proof (idea). “spoils” if . We have seen that can spoil at

most primes, and hence there are spoiled primes in total. We
can take any unspoiled prime to satisfy the claim of the lemma.

m1, m2, …, mℓ ℓ ≤ k X, Y
j ≠ i q ∈ Q mi ≠ mj (mod q)

mj q ∈ Q mi = mj (mod q) mj

log m ≤ (k − 1)log m

K-MISMATCH

94

BASED ON PORAT AND PORAT’09

• For every run the 1-mismatch algorithm for and

• If the algorithm tells that the Hamming distance between is one and outputs the mismatch
position, remember it!

• Fix all the mismatches output by the algorithm and check that the pattern equals in time
using fingerprints

• Time , (extra) space , error probability

q ∈ Q, r1, r2 ∈ 𝔽q Tr1
q Pr2

q

Sr
q, Pr

q

S O(k)

nk2 ⋅ polylog m k3 ⋅ polylog m 1/nc

S

K-MISMATCH

TIME , SPACE nk2 ⋅ polylog m k3 ⋅ polylog m

ISN’T THIS GREAT? YES, BUT…

• The algorithm we developed is randomised: we use Karp-Rabin algorithm

• We have seen faster AND deterministic algorithms!

• It uses extra space, while all previous algorithms used spaceΩ(k polylog m) Ω(n)

96

ISN’T THIS GREAT? YES, BUT…

Porat and Porat’09 also showed an space, time streaming algorithm for
exact pattern matching:

In the streaming setting,

• the text arrives one letter at a time

• we account for all the space used, including the space we need to store and

O(log m) O(log m)

P T

97

STREAMING K-MISMATCH

k3polylog m nk2polylog m

k2polylog m n kpolylog m

kpolylog m nkpolylog m

kpolylog m n kpolylog m

Space Time

Porat and Porat’09

Clifford, Fontaine, Porat, Sach,
Starikovskaya’16

Golan, Kopelowitz, Porat’18

Clifford, Kociumaka, Porat’19

Golan, Kociumaka, Kopelowitz, Porat’20 s ⋅ polylog m n(k /s) ⋅ polylogm

98

STREAMING K-MISMATCH

k3polylog m nk2polylog m

k2polylog m n kpolylog m

kpolylog m nkpolylog m

kpolylog m n kpolylog m

Space Time

Porat and Porat’09

Clifford, Fontaine, Porat, Sach,
Starikovskaya’16

Golan, Kopelowitz, Porat’18

Clifford, Kociumaka, Porat’19

Golan, Kociumaka, Kopelowitz, Porat’20 s ⋅ polylog m n(k /s) ⋅ polylogm

Open question:

What’s optimal space?

99

APPROXIMATION ALGORITHM

PROBLEM FORMULATION

101

Given a text of length , a pattern of length , and a constant , for each
-length substring of output a number between and , where is
the Hamming distance between the substring and

T n P m ε > 0 m
T (1 − ε) ⋅ d (1 + ε) ⋅ d d

P

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3, ,

output a number in [4,6]

ε = 1/3

WHAT DO WE KNOW?

n
ε2 polylogn

O(n
ε

log 1
ε

log n log m)

O(n
ε

log n log m)

O(n /ε2)

Time

Karloff’93

Kopelowitz and Porat’15

Kopelowitz and Porat’18

Chan et al.’20

102

WHAT DO WE KNOW?

n
ε2 polylogn

O(n
ε

log 1
ε

log n log m)

O(n
ε

log n log m)

O(n /ε2)

Time

Karloff’93

Kopelowitz and Porat’15

Kopelowitz and Porat’18

Chan et al.’20

Open question:

Can the dependency on be

improved?
ε

103

ALGORITHM
KOPELOWITZ AND PORAT’18

ApproxHam()

for to

do: Pick a random

compute

return

T[j, j + m − 1], P, ε

i = 1 c log n

h : Σ → {1,2,…,
1
ε

}

xi = Ham(T[j, j + m − 1], P)

max
1≤i≤c log n

xi

104

CORRECTNESS

105

KOPELOWITZ AND PORAT’18

 (after applying , each mismatch remains a

mismatch with probability)

d := Ham(T[j, j + m − 1], P)

𝔼[xi] = (1 −
ε
2

) ⋅ d h

1 −
ε
2

𝔼[d − xi] =
ε
2

⋅ d

CORRECTNESS

106

KOPELOWITZ AND PORAT’18

 and therefore

Finally, the error probability

d := Ham(T[j, j + m − 1], P)

𝔼[xi] = (1 −
ε
2

) ⋅ d 𝔼[d − xi] =
ε
2

⋅ d

Pr[xi < (1 − ε) ⋅ d] = Pr[d − xi > ε ⋅ d] ≤
𝔼[d − xi]

εd
=

1
2

Pr[max
i

xi < (1 − ε) ⋅ d] ≤ 1/nc

Markov’s inequality

IMPLEMENTATION

107

KOPELOWITZ AND PORAT’18

After picking a hash function for an iteration , compute all text-to-pattern

Hamming distances in time using the algorithm for small

alphabets!

Total time:

i
O(

n
ε

log m)

O(
n
ε

log n log m)

TAKE HOME MESSAGE

• Exact algorithms for binary and general case (binary time, general)

• No combinatorial algorithm in time unless CMM conjecture is false

• -time algorithm via kangaroo jumps, by combining kangaroo jumps +
frequent characters + convolutions

• -time streaming algorithm that computes text-to-pattern Hamming distances

bounded by

• Approximation algorithm with runtime

O(n log m) O(n m log m)

O(nm1/2−ε)

O(nk) O(n k log m)

n k polylogm
k

O(
n
ε

log n log m)

108

TAKE HOME MESSAGE

• If you have further questions or would like to discuss one of the open problems

• If you would like to do an internship (stage L3, stage M1) in this area (in France or abroad)

you can contact me via tat.starikovskaya@gmail.com

Interesting event: 2nd Workshop Complexity and Algorithms (IHP Paris, 26-28 September)

109

THANK YOU!

mailto:tat.starikovskaya@gmail.com

