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TEXT-TO-PATTERN HAMMING DISTANCE
We are given two strings (= sequences of letters from a finite alphabet): a text  of 
length  and a pattern  of length 


The task is to compute the Hamming distance (= number of mismatches) between 
each - length substring of the text and the pattern


T
n P m ≤ n

m
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2 1 2 0 0

HD = 1
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TEXT-TO-PATTERN HAMMING DISTANCE
We are given two strings (= sequences of letters from a finite alphabet): a text  of length  
and a pattern  of length 


The task is to compute the Hamming distance (= number of mismatches) between each - 
length substring of the text and the pattern


… and so on. A fundamental problem in algorithms on strings! Naive algorithm:  time.

T n
P m ≤ n

m

O(nm)

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 5
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BEFORE WE START

• I will speak in English, mais je parle français


• I love questions! In English or in French, at any time


• There will be lots of exercises, please participate actively


6



OUTLINE

• Reminder: fast multiplication of polynomials via Fast Fourier Transform


• Exact algorithms for binary and general case


• Lower bound for combinatorial algorithms


• Kangaroo jumps


• Smaller space


• Approximation algorithm
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REMINDER: FAST MULTIPLICATION OF POLYNOMIALS



Let me start with an algorithm for fast multiplication of polynomials


Half of you probably saw it last year, and half will see it this year


We will use it to compute text-to-pattern Hamming distances; it is also a basis of many 
other great algorithms on strings
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Consider , 


We can compute  in  time


Computing   naively requires  time


Fast Fourier Transform:  time

P(x) =
n−1

∑
i=0

aixi Q(x) =
n−1

∑
i=0

bixi

R1(x) = P(x) + Q(x) =
n−1

∑
i=0

(ai + bi)xi O(n)

R2(x) = P(x) ⋅ Q(x) =
2n−2

∑
k=0

∑
i+j=k

(ai ⋅ bj)xk O(n2)

O(n log n)

FAST MULTIPLICATION OF POLYNOMIALS

10



FAST MULTIPLICATION OF POLYNOMIALS
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Coefficient representation: 


Point-value representation:  such that 


Theorem. For any set , where , there exists a unique 

polynomial of degree  such that  for all .


Given point-value representations  of  and 

 of  and of , one can compute the point-value 

representation of  in  time

P(x) =
n−1

∑
i=0

aixi

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} P(xi) = yi

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} xi ≠ xj

< n P(xi) = yi i = 0,…, n − 1

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} P(x)
{(x0, y′￼0), (x1, y′￼1), …, (xn−1, y′￼n−1)} P(x) Q(x)

P(x) ⋅ Q(x) O(n)

Proof: in 2 slides



FAST MULTIPLICATION OF POLYNOMIALSFAST MULTIPLICATION OF POLYNOMIALS


an−1, …, a1, a0
bn−1, …, b1, b0

P(w0
2n), Q(w0

2n)
P(w1

2n), Q(w1
2n)

⋮
P(w2n−1

2n ), Q(w2n−1
2n )

c2n−2, …, c1, c0
naive multiplication

 timeO(n2)

FFT

 timeΘ(n log n)

point-wise mult.

 timeΘ(n)

R(w0
2n)

R(w1
2n)

⋮
R(w2n−1

2n )

inverse FFT

 timeΘ(n log n)
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FAST MULTIPLICATION OF POLYNOMIALS

Theorem. For any set , where , there exists a unique polynomial of 
degree  such that  for all .


Proof. Let . We can represent the condition  for all  in the matrix 

form:


 

{(x0, y0), (x1, y1), …, (xn−1, yn−1)} xi ≠ xj
< n P(xi) = yi i = 0,…, n − 1

P(x) =
n−1

∑
i=0

aixi P(xi) = yi i = 0,…, n − 1

1 x0 x2
0 … xn−1

0

1 x1 x2
1 … xn−1

1
⋮ ⋮ ⋮ ⋱ ⋮
1 xn−1 x2

n−1 … xn−1
n−1

a0
a1
⋮

an−1

=

y0
y1
⋮

yn−1

Vandermonde matrix,

determinant = Π0≤i<j≤n−1(xj − xi)
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COMPLEX ROOTS OF UNITY
wn = 1

w0
8 = w8

8

w1
8

w2
8w3

8

w4
8

w5
8

w6
8

w7
8

wk
n = e2πik/n = cos 2πk/n + i sin 2πk/n

Cancellation property: wdk
dn = wk

n

Halving property:   {(w0
2n)

2, (w1
2n)

2, …, (w2n−1
2n )2} = {w0

n , w1
n , …, wn−1

n }

Summation property:  for all 

n−1

∑
j=0

(wk
n) j = 0 k ≠ 0 (mod n)

14



FAST FOURIER TRANSFORM
discrete Fourier transform  (assume )


 


                                         





• Evaluate  and  at  recursively (by the halving property, 

)


• Combine the results to compute 

P(x) =
i=n−1

∑
i=0

aixi → {P(w0
n), P(w1

n), …, P(wn
n)} n = 2j

P(x) = an−1xn−1 + an−2xn−2 + … + a1x + a0

Podd(x) = an−1xn/2−1 + an−3xn/2−2 + … + a1 Peven(x) = an−2xn/2−1 + an−4xn/2−1 + … + a0

P(x) = xPodd(x2) + Peven(x2)

Podd(x) Peven(x) (w0
n)2, (w1

n)2, …, (wn−1
n )2

{(w0
n)2, (w1

n)2, …, (wn−1
n )2} = {(w0

n/2), (w1
n/2), …, (wn/2−1

n/2 )}

{P(w0
n), P(w1

n), …, P(wn
n)}

 T(n) = 2T(n /2) + Θ(n) = O(n log n)
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FAST MULTIPLICATION OF POLYNOMIALSFAST MULTIPLICATION OF POLYNOMIALS


an−1, …, a1, a0
bn−1, …, b1, b0

P(w0
2n), Q(w0

2n)
P(w1

2n), Q(w1
2n)

⋮
P(w2n−1

2n ), Q(w2n−1
2n )

c2n−2, …, c1, c0
naive multiplication

 timeO(n2)

FFT

 timeΘ(n log n)
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INVERSE FOURIER TRANSFORM

Point representation  


 

{P(w0
n), P(w1

n), …, P(wn
n)} → P(x) =

i=n−1

∑
i=0

aixi

1 1 1 … 1
1 wn w2

n … wn−1
n

1 w2
n w4

n … w2(n−1)
n

⋮ ⋮ ⋮ ⋱ ⋮
1 wn−1

n w(n−1)2
n … w(n−1)(n−1)

n

a0
a1
a2
⋮

an−1

=

P(w0
n)

P(w1
n)

⋮
P(wn−1

n )

17
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INVERSE FOURIER TRANSFORM

Point representation  


 


{P(w0
n), P(w1

n), …, P(wn
n)} → P(x) =

i=n−1

∑
i=0

aixi

a0
a1
a2
⋮

an−1

= V−1
n ×

P(w0
n)

P(w1
n)

⋮
P(wn−1

n )
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INVERSE FOURIER TRANSFORM
Theorem. 


Proof.





If , the sum equals one. Otherwise, the sum equals zero by Summation property


Corollary. , that is,  is a point-value representation of a polynomial 

 and can be computed in  time using Fast Fourier transform!

V−1
n [ j, k] = w−kj

n /n

(V−1
n Vn)[ j, j′￼] =

n−1

∑
k=0

(V−1
n )[ j, k](Vn)[k, j′￼] =

n−1

∑
k=0

(w−kj
n /n)(wkj

n ) =
n−1

∑
k=0

(wk( j′￼−j)
n /n)

j′￼ = j

aj =
1
n

n−1

∑
k=0

P(wk
n)w−kj

n {aj}

Q(z) =
n−1

∑
k=0

ykzk O(n log n)
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TWO POLYNOMIALS OF DEGREE AT MOST  CAN BE MULTIPLIED IN  TIMEn O(n log n)

20



ALL TEXT-TO-PATTERN HAMMING DISTANCES



PROBLEM FORMULATION

We are given two strings (= sequences of letters from a finite alphabet: a text  of length 
 and a pattern  of length 


The task is to compute the Hamming distance (= number of mismatches) between each 
-length substring of the text and of the pattern


T
n P m ≤ n

m

22

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3



CONSTANT-SIZE ALPHABETS 

Our task is to develop an algorithm with running time . 


Given two integer vectors  of lengths  and , , their convolution is defined as a vector  of length 

, where . Show an -time algorithm for computing the convolution. 


Given binary text  of length  and pattern  of length . For a substring   of the text, express the 
number of matching ones between it and  in terms of a convolution. What about the number of matching 
zeros and the Hamming distance?


Derive a -time algorithm for computing the Hamming distances between all -length substrings of 
binary  and  and a -time algorithm for strings over an alphabet of size .

O(n log m)

A, B n m n ≥ m C

n − m C[i] =
m

∑
j=1

A[i + m − j]B[ j] O(n log m)

T n P m T[i − m + 1,i]
P

O(n log n) m
T P O(σn log n) σ

FISHER AND PATERSON’74

23



Let’s now develop an algorithm with running time !


• Let’s assume that  for starters. A letter of  is called frequent if it occurs at 
least  times. Number of frequent letters is .


• How to compute the number of mismatches due to frequent letters in 
 time?

O(n m log m)

n = 2m T
m log m ≤ 2 m/log m

O(m m log m)

GENERAL ALPHABETS 
ABRAHAMSON’87

24



Our task is to develop an algorithm with running time . 


• For each position  of  such that  is not frequent mark at most  positions in 

the text where   and its occurrence in the text are aligned.


O(n m log m)

i P P[i] m log m
P[i]

i

GENERAL ALPHABETS 
ABRAHAMSON’87
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Our task is to develop an algorithm with running time . 


• For each position  of  such that  is not frequent mark at most  positions in 

the text where   and its occurrence in the text are aligned. Total time: .


• We can use the marks to compute the number of mismatches due to non-frequent letters

O(n m log m)

i P P[i] m log m
P[i] O(m m log m)

i

GENERAL ALPHABETS 
ABRAHAMSON’87

28



• We can sum up the mismatches due to frequent and non-frequent letters in  
time.


• This gives a -time algorithm for the case . 


• Derive an -time algorithm for general .

O(m)

O(m m log m) n = 2m

O(n m log m) n

GENERAL ALPHABETS 
ABRAHAMSON’87
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ALL HAMMING DISTANCES: 


 TIME FOR CONSTANT-SIZE ALPHABET AND  IN GENERAL  O(n log m) O(n m log m)



BIG OPEN QUESTION: IS THERE A 
FASTER ALGORITHM?



LOWER BOUND



COMBINATORIAL MATRIX MULTIPLICATION

33

Conjecture. For any , there is no combinatorial algorithm for multiplying an 
 matrix  with an  matrix  in time .


NB! It is not clear what does combinatorial mean precisely. However, FFT and so boolean 
convolution often used in algorithms on strings are considered not to be combinatorial. 


α, β, γ, ε > 0
nα × nβ A nβ × nγ B O(nα+β+γ−ε)



ENCODING MATRICES
0 1 1 0

1 0 1 0

0 0 0 1

1 1 1 0

0 1 1 1

1 0 1

1 1 0

1 0 1

1 0 0

?
Replace every 1 in column  of  with  and every 1 in row  of  with  
j A j i B i

M N

N
L

34

M ≥ N ≥ L



ENCODING MATRICES
0 2 3 0

1 0 3 0

0 0 0 4

1 2 3 0

0 2 3 4

1 0’ 1

2 2 0’

3 0’ 3

4 0’ 0’

?M N

N
L

Replace every 0 in  with 0’
B

35

M ≥ N ≥ L



ENCODING MATRICES
0 2 3 0

1 0 3 0

0 0 0 4

1 2 3 0

0 2 3 4

1 0’ 1

2 2 0’

3 0’ 3

4 0’ 0

?M N

N
L

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2

36

M ≥ N ≥ L



ENCODING MATRICES
0 2 3 0#N2

1 0 3 0 0 0 0 4 1 2 3 0 0 2 3 4

1 2 3 4 0’ 2 0’ 0’ 1 0’ 3 0’

#N2

37

# # # # # # # #

# #

For the sake of example, let’s recall that  and .


What can we say about the Hamming distance at a particular alignment of  and ?

N = 4 L = 3

T P

N − L N − L

N − L + 1 N − L + 1 N − L + 1 N − L + 1



ENCODING MATRICES
0 2 3 0#N2

1 0 3 0 0 0 0 4 1 2 3 0 0 2 3 4 #N2
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# # # # # # # #

For the sake of example, let’s recall that  and .


What can we say about the Hamming distance at a particular alignment of  and ?

N = 4 L = 3

T P

N − L + 1 N − L + 1 N − L + 1 N − L + 1

1 2 3 4 0’ 2 0’ 0’ 1 0’ 3 0’# #

N − L N − L



ENCODING MATRICES
0 2 3 0#N2

1 0 3 0 0 0 0 4 1 2 3 0 0 2 3 4 #N2
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# # # # # # # #

For the sake of example, let’s recall that  and .


What can we say about the Hamming distance at a particular alignment of  and ?

N = 4 L = 3

T P

N − L + 1 N − L + 1 N − L + 1 N − L + 1

1 2 3 4 0’ 2 0’ 0’ 1 0’ 3 0’# #

N − L N − L



ENCODING MATRICES

A row  of the 1st matrix and a column  of the 2nd matrix generate a match iff:


• They are perfectly aligned


• There is  such that the th bit of  and the th bit of  are 1 


For any alignment of the pattern and of the text there is at most one aligned row-column 
pair (length of a row+padding in the text is , a column+padding in the pattern — )


i j

k k A k B

N + 1 N

40

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2



ENCODING MATRICES

Length of : 


Hamming distance = 


|non-# letters in | + |non-# letters in a |P|-length substring of  | — |matches| 


By computing all Hamming distances, we can derive !

P (N − 1)(N − L) + NL = Θ(N2) = |P |

P T ≤ MN

A × B

41

Can be computed in  time!O(1)

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2



ENCODING MATRICES

By computing all Hamming distances, we can derive !








Set , . By the CMM conjecture, no combinatorial algorithm can 
solve the problem in  time! 


A × B

|P | = (N − 1)(N − L) + NL = Θ(N2)

|T | = 2N2 + MN + (M − 1)(N − L + 1) = Θ(MN)

M = n1−α/2 N = L = nα/2

n1+α/2−αε = |T | ⋅ |P |1/2−ε

42

T = 0 2 3 0#N2 #N−L+1 1 0 3 0 #N−L+1 0 0 0 4 #N−L+1 1 2 3 0 #N−L+1 0 2 3 4

P = 1 2 3 4 #N−L 0’ 2 0’ 0’ 1 0’ 3 0’#N−L

#N2

BASED ON GAWRYCHOWSKI AND UZNANSKI’18



KANGAROO JUMPS



PROBLEM FORMULATION

Given a text  of length  and a pattern  of length , compute the Hamming distance 
between each -length substring of  and 


T n P m
m T P

44

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3



PROBLEM FORMULATION

Given a text  of length  and a pattern  of length , compute the Hamming distance 
between each -length substring of  and 


T n P m
m T P
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0 1 2 0 0 0 2 1 0 0 1 1 2 0 2
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PROBLEM FORMULATION

Given a text  of length , a pattern  of length , and an integer k, compute the 
minimum of k+1 and the Hamming distance between each m-length substring of  and 


T n P m
T P

46

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

min(2, HD) = 2



PROBLEM FORMULATION

In other words, if the Hamming distance  between a substring and the pattern 


• , then we must output 


• otherwise, we can simply output , which means that “the distance is too large”


Makes perfect sense in practice: why would you be interested in substrings that are too 
far from your pattern?


This variant of the problem is called the -mismatch problem

d

≤ k d

k + 1

k

47



Suffix tree

© Sergey Konotoptsev



Dictionary  = set of strings


Trie for  is a tree. Every edge of the trie is labeled with a letter so that:


• For every node, outgoing edges are labeled with different letters.


• For every string , there is a root-to-node path that spells out 
. The end of the path is labeled with the id of .


• Every root-to-leaf path spells out a string from .


• Space = O(total length of strings in )

D

D

S ∈ D
S S

D

D

TRIE
a

a

a

b

c

b

c

c

c

1 2 3

4

1 2 3 4

a

Example: D = {abc, bca, bcc, caa}
49



COMPACT TRIE
a

a

a

b

c

b

c

c

c

1 2 3

4

a
a

a

a

b
c

b
c

c

c

1 2 3

4

a

trie compact trie

50



banana$

na

na$

$

$

$

a

na

na$

1

2

3

4

5

6

T[3..]$ = "nana$"

T[5..]$ = "na$"

T[1..]$ = "banana$"

T[2..]$ = "anana$"

T[4..]$ = "ana$"

T[6..]$ = "a$"

Suffixes of a string T = banana:


T[1,6] = banana


T[2,6] = anana


T[3,6] = nana


T[4,6] = ana


T[5,6] = na


T[6,6] = a


We append $ to each of the suffixes and build the compact trie for them.

SUFFIX TREE

51



SUFFIX TREE

banana$

na

na$

$

$

$

a

na

na$

1

2

3

4

5

6

T[3..]$ = "nana$"

T[5..]$ = "na$"

T[1..]$ = "banana$"

T[2..]$ = "anana$"

T[4..]$ = "ana$"

T[6..]$ = "a$"

[5,6]

[3,4]

       [1,6]

[2,2]

[3,4]

[5,6]

this is the final suffix tree!

T = banana

Storing the labels on the edges can take  space.


To save the space, we represent each label as two numbers: 
the left and the right endpoints of the label in .


Number of leaves: 


Number of nodes: 


Number of edges:  

Θ( |T |2 )

T

|T |

≤ 2 |T | − 1

≤ 2 |T | − 2

52



SUFFIX TREE

banana$

na

na$

$

$

$

a

na

na$

1

2

3

4

5

6

T[3..]$ = "nana$"

T[5..]$ = "na$"

T[1..]$ = "banana$"

T[2..]$ = "anana$"

T[4..]$ = "ana$"

T[6..]$ = "a$"

[5,6]

[3,4]

       [1,6]

[2,2]

[3,4]

[5,6]

this is the final suffix tree!

T = banana

Can be built in  time for any alphabet   [Farach’97]


Exercise: How much time do we need to build a tree that 
contains suffixes of the text  and the pattern ?

O( |T | )

T P

53



LOWEST COMMON ANCESTORS

u v

LCA(u, v)

A tree of size  can be processed in time 
 to support lowest common ancestor 

(LCA) queries in constant time. [Fischer, 
Hein’06]


 must return the lowest node that is 
an ancestor of both  and .

O(n)
O(n)

LCA(u, v)
u v

54



KANGAROO JUMPS
i

How to decide if the Hamming distance between  and  at position  is at most ?


Imagine that there is an oracle that tells us the maximum  such that 
 in  time. 


Exercise: using the oracle, the question above can be solved in  time.

P T i k

ℓ
T[k, k + ℓ] = P[ j, j + ℓ] O(1)

O(k)
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KANGAROO JUMPS
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How to decide if the Hamming distance between  and  at position  is at most ?


Imagine that there is an oracle that tells us the maximum  such that 
 in  time. 


Exercise: using the oracle, the question above can be solved in  time.

P T i k

ℓ
T[k, k + ℓ] = P[ j, j + ℓ] O(1)

O(k)
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KANGAROO JUMPS
i

How to decide if the Hamming distance between  and  at position  is at most ?


Imagine that there is an oracle that tells us the maximum  such that 
 in  time. 


Exercise: using the oracle, the question above can be solved in  time.


Exercise: implement the oracle using suffix trees.

P T i k

ℓ
T[k, k + ℓ] = P[ j, j + ℓ] O(1)

O(k)
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KANGAROO JUMPS

•  time and space to build the suffix tree containing the suffixes 
of the pattern and the text


•  time to preprocess it for lowest common ancestor queries


•  time per position to compute 


•  time and  space in total!


O(n + m) = O(n)

O(n + m) = O(n)

O(k) min(k + 1,Ham)

O(nk) O(n)
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K-MISMATCH

TIME , SPACE O(nk) O(n)



ARE THERE FASTER ALGORITHMS? 

60

O(n k log k)

O((n + n
m

⋅ k3 log k))

O((n + n
m

⋅ k2) polylogn)

O((m log2 m log |Σ | + k m log m) ⋅ n /m)

O(n + n
m

⋅ k2 log log k)

Time

Amir et al.’04

Amir et al.’04

Clifford et al.’16

Gawrychowski and Uznański’18

Charalampoupoulos et al.’20

 sp
ac

e!
O

(n
)



ARE THERE FASTER ALGORITHMS? 
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O(n k log k)

O((n + n
m

⋅ k3 log k))

O((n + n
m

⋅ k2) polylogn)

O((m log2 m log |Σ | + k m log m) ⋅ n /m)

O(n + n
m

⋅ k2 log log k)

Time

Amir et al.’04

Amir et al.’04

Clifford et al.’16

Gawrychowski and Uznański’18

Charalampoupoulos et al.’20

 sp
ac

e!
O

(n
)



AMIR ET AL.’04

• Small alphabet: Number of different characters in the pattern is at most  


• Medium-size alphabet: Number of different characters in the pattern is in 


• Large alphabet: Number of different characters in the pattern is at least 


2 k

[2 k + 1,2k)

2k

 TIMEO(n k log m)
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AMIR ET AL.’04

• Small alphabet: Number of different characters in the pattern is at most  


• Medium-size alphabet: Number of different characters in the pattern is in 


• Large alphabet: Number of different characters in the pattern is at least 


2 k

[2 k + 1,2k)

2k

 time 

(convolutions)

O(n k log m)

 TIMEO(n k log m)
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AMIR ET AL.’04

Large alphabet: Number of different symbols in the pattern is at least 


Let  be distinct characters in the pattern, and  be the positions where they appear first in 
the pattern 


For each , : if , mark 


Discard all text locations with less than  marks


2k

a1, a2, …, a2k i1, i2, …, i2k

i 1 ≤ i ≤ n ti = aj m + i − ij

k

 TIMEO(n k log m)

a1 a2 a3 a2k…
i1 i2 i3 i2k

a1 a2 a3 a2k…
i1 i2 i3 i2k

a2 …
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AMIR ET AL.’04

Large alphabet: Number of different symbols in the pattern is at least 


For each , : if , mark 


Discard all text locations with less than  marks


Total number of marks is , hence the number of non-discarded positions is 


The endpoint of every -mismatch occurrence must have at least  marks


Verification of non-discarded positions:  time using kangaroo jumps 

2k

i 1 ≤ i ≤ n ti = aj m + i − ij

k

n O(n/k)

k k

O(
n
k

⋅ k) = O(n)

 TIMEO(n k log m)

a1 a2 a3 a2k…
i1 i2 i3 i2k

a2 …
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AMIR ET AL.’04

Medium-size alphabet: Number of different characters in the pattern is in 


A character that appears in the pattern at least  times is called frequent


We consider two subcases:


• Number of frequent characters is at least 


• Number of frequent characters is less than 


[2 k + 1,2k)

2 k

k

k

 TIMEO(n k log m)
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AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least  times) characters is at least 


Exercise: show that the number of -mismatch occurrences is 

2 k k

k O(n/ k)

 TIMEO(n k log m)
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AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least  times) characters is at least 


Exercise: show that the number of -mismatch occurrences is 


• Hint 1: Use marks and the pigeonhole principle!


2 k k

k O(n/ k)

 TIMEO(n k log m)
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AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least  times) characters is at least 


Exercise: show that the number of -mismatch occurrences is 


• Hint 1: Use marks and the pigeonhole principle!


• Hint 2: Choose  frequent characters, and for each of them  occurrences in the 
pattern


2 k k

k O(n/ k)

k 2 k

 TIMEO(n k log m)

69



AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least  times) characters is at least 


Exercise: show that the number of -mismatch occurrences is 


• We have  possible locations of -mismatch occurrences (locations with  marks!)


• Each of them can be verified in  time via kangaroo jumps (  in total)


Yes, but how do we find locations with  marks?!! Let’s see…

2 k k

k O(n/ k)

O(n/ k) k ≥ k

O(k) O(n k)

≥ k

 TIMEO(n k log m)
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AMIR ET AL.’04

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1, 
and all other characters with 0


What can we say about the number of marks at a particular location?


How to compute this number?

 TIMEO(n k log m)

0 0 1 0 1 1 0 … 0 1 0 0
i1 i2 i3 i2k

0 0 0 1 1 0 … 0 1 1 0
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AMIR ET AL.’04

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1, 
and all other characters with 0


What can we say about the number of marks at a particular location? (# of matching ones!)


How to compute this number? (Use convolutions,  time)O(n log m)

 TIMEO(n k log m)

0 0 1 0 1 1 0 … 0 1 0 0
i1 i2 i3 i2k

0 0 0 1 1 0 … 0 1 1 0
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AMIR ET AL.’04

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1, 
and all other characters with 0


What can we say about the number of marks at a particular location? (# of matching ones!)


How to compute this number? (Use convolutions,  time)O(n log m)

 TIMEO(n k log m)

0 0 1 0 1 1 0 … 0 1 0 0
i1 i2 i3 i2k

0 0 0 1 1 0 … 0 1 1 0 Marking step takes  timeO(n k log m)
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AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least  times) characters is less than 


• Mismatches caused by frequent characters can be computed in  time 
(similar to the marking step we have just seen)


• We must “only” compute the mismatches due to non-frequent characters…


A. Total number of occurrences of such characters is at least 


B. Total number of occurrences of such characters is less than 

2 k k

O(n k log m)

2k

2k

 TIMEO(n k log m)
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AMIR ET AL.’04

Number of frequent (= occurs in the pattern at least  times) characters is less than 


• Mismatches caused by frequent characters can be computed in  time 
(similar to the marking step we have just seen)


• We must “only” compute the mismatches due to non-frequent characters…


A. Total number of occurrences of such characters is at least 


B. Total number of occurrences of such characters is less than 

2 k k

O(n k log m)

2k

2k

 TIMEO(n k log m)

Similar to the large 
alphabets!
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AMIR ET AL.’04

Mismatches due to non-frequent characters, total number of occurrences  


• Sort all non-frequent characters


• Divide them into  blocks of size  so that one character appears only in one block


• Replace each character with the first character in its block (in the text and in the pattern)

≤ 2k

O( k) 2 k

 TIMEO(n k log m)

a1 a2 a3 aocc…
i1 i2 i3 iocc

…
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AMIR ET AL.’04

Mismatches due to non-frequent characters, total number of occurrences  


• Compute all text-to-pattern distances using  convolutions (this accounts for all mismatches when a 

text character and a pattern character are in different block) -  time!


• For each text character, account for at most  mismatches that appear when the character and the 

aligned pattern character are in the same block -  time!

≤ 2k

O( k)
O(n k log m)

2 k
O(n k log m)

 TIMEO(n k log m)

a1 a2 a3 aocc…
i1 i2 i3 iocc

…
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K-MISMATCH

TIME , SPACE O(n k log m) O(n)



SMALLER SPACE



EXACT PATTERN MATCHING

0 1 1 10 0 0 11 1 0 10

Given a pattern of length  and a text of length , find all occurrences of the pattern in the textm n

1 1 10 0

0
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EXACT PATTERN MATCHING

• More than 80 algorithms known!


• Implemented in SMART, String Matching Algorithms Research Tool: https://smart-
tool.github.io/smart/ 


• Today we will discuss the algorithm of Karp and Rabin from 1987


• Again, some of you have probably seen it and some will see this year..


• Promise: I will show you a new, much simpler analysis

81

https://smart-tool.github.io/smart/
https://smart-tool.github.io/smart/


EXACT PATTERN MATCHING
KARP AND RABIN’87

The Karp-Rabin fingerprint of a string  is defined as 


, 


where  is a prime and  is a random integer in .


It’s a good hash function:


• If , then ;


• If  while the lengths of  and  are equal, 

then  with high probability (if  is large enough).

S = s1s2…sm

φ(s1s2…sm) =
m

∑
i=1

si ⋅ rm−i mod p

p r 𝔽p

S = T φ(S) = φ(T)
S ≠ T S T

φ(S) ≠ φ(T) p

Let’s zoom in…
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EXACT PATTERN MATCHING
KARP AND RABIN’87

Let , , and  be the size of the alphabet. Let , 

where  is a constant.





Hence,  is a root of , a polynomial over . The number of roots 

of this polynomial is at most . The probability of such event is at most .

S = s1s2…sm T = t1t2…tm σ p ≥ max{σ, nc}
c > 1

φ(S) = φ(T) ⇔
m

∑
i=1

(si − ti) ⋅ rm−i mod p = 0

r P(x) =
m

∑
i=1

(si − ti) ⋅ xm−i 𝔽p

m m/p ≤ 1/nc−1
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EXACT PATTERN MATCHING
KARP AND RABIN’87

• Compute the fingerprint of the pattern. 


• Compare it with the fingerprint of each -length substring of the text. If the 
fingerprint of the pattern is equal to the fingerprint of a substring, report it as 
an occurrence.


• The algorithm never misses an occurrence (no false-negatives)


• False-positives can happen with probability at most 

m

1/nc−1
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EXACT PATTERN MATCHING
KARP AND RABIN’87

How to compute the fingerprints?


 





Therefore, . 


We can compute the fingerprint of the -th -length substring of the text from the 
fingerprint of the -th substring in  space and  time.


Karp-Rabin algorithm:  extra space,  time per letter of the text

φ(s1s2…sm) =
m

∑
i=1

si ⋅ rm−i mod p

φ(s2…sm+1) =
m

∑
i=1

si+1 ⋅ rm−i mod p

φ(s2…sm+1) = (φ(s1s2…sm) − s1 ⋅ rm−1) ⋅ r + sm+1 mod p

(i + 1) m
i O(1) O(1)

O(1) O(1)

This is why it’s “rolling”!
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1-MISMATCH

86

BASED ON PORAT AND PORAT’09

For a string , define a string 
X Xq
r = X[q]X[q + r]X[q + 2r]…

a b c

X3
4 = abc



1-MISMATCH

87

BASED ON PORAT AND PORAT’09

• Consider two strings  of length 


•  is the set of  smallest prime numbers. By the prime number theorem, 



• For each  consider substrings 

X, Y m

Q log m
max Q ≤ c ⋅ log m log log m

q ∈ Q, r ∈ 𝔽q Xr
q, Yr

q



1-MISMATCH
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BASED ON PORAT AND PORAT’09

• If , what can we say about the number of mismatching pairs ?


• And if the Hamming distance between  is one?


• What if it is at least two?

X = Y Xr
q, Yr

q

X, Y



1-MISMATCH

89

BASED ON PORAT AND PORAT’09

Lemma. If the Hamming distance between  is at least two, then for some 
 there exist  such that  and .


Proof. Let  be the mismatch positions. If , then 
. However,  and . The claim follows!

X, Y
q ∈ Q r1, r2 ∈ 𝔽p, r1 ≠ r2 Xr1

q ≠ Yr1
q Xr2

q ≠ Yr2
q

m1 < m2 m1 = m2 = r (mod q)
m2 − m1 ⋮ q m ≥ m2 − m1 Πq∈Qq > m



1-MISMATCH
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BASED ON PORAT AND PORAT’09

• Assume someone tells you which pairs  are equal. 


• How can you use this to deduce whether the Hamming distance between 
 is one? Can you also deduce the mismatch position?

Xr
q, Yr

q

X, Y



1-MISMATCH
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BASED ON PORAT AND PORAT’09

• Let’s go back to computing text-to-pattern distances…


• For every  run the Karp-Rabin algorithm for  and 


• This algorithm tells, for every -length substring , whether  


• Time , (extra) space , error probability 

q ∈ Q, r1, r2 ∈ 𝔽q Tr1
q Pr2

q

m S Sr
q = Pr

q

n ⋅ polylog m polylog m 1/nc



K-MISMATCH
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BASED ON PORAT AND PORAT’09

• Consider two strings  of length 


•  is the set of  smallest prime numbers. By the prime number 
theorem, 


• For each  consider substrings 

X, Y m

Q k2 log m
max Q ≤ c ⋅ k2 log m log log m

q ∈ Q, r ∈ 𝔽q Xr
q, Yr

q



K-MISMATCH

93

BASED ON PORAT AND PORAT’09

Lemma. Let , , be mismatch positions between . For a fixed i 

and all  there exists  such that .


Proof (idea).  “spoils”  if . We have seen that  can spoil at 

most  primes, and hence there are  spoiled primes in total. We 
can take any unspoiled prime to satisfy the claim of the lemma. 

m1, m2, …, mℓ ℓ ≤ k X, Y
j ≠ i q ∈ Q mi ≠ mj (mod q)

mj q ∈ Q mi = mj (mod q) mj

log m ≤ (k − 1)log m



K-MISMATCH
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BASED ON PORAT AND PORAT’09

• For every  run the 1-mismatch algorithm for  and 


• If the algorithm tells that the Hamming distance between  is one and outputs the mismatch 
position, remember it!


• Fix all the mismatches output by the algorithm and check that the pattern equals  in  time 
using fingerprints


• Time , (extra) space , error probability 

q ∈ Q, r1, r2 ∈ 𝔽q Tr1
q Pr2

q

Sr
q, Pr

q

S O(k)

nk2 ⋅ polylog m k3 ⋅ polylog m 1/nc

S



K-MISMATCH

TIME , SPACE nk2 ⋅ polylog m k3 ⋅ polylog m



ISN’T THIS GREAT? YES, BUT…

• The algorithm we developed is randomised: we use Karp-Rabin algorithm


• We have seen faster AND deterministic algorithms!


• It uses  extra space, while all previous algorithms used  spaceΩ(k polylog m) Ω(n)
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ISN’T THIS GREAT? YES, BUT…

Porat and Porat’09 also showed an  space,  time streaming algorithm for 
exact pattern matching:


In the streaming setting,


• the text arrives one letter at a time


• we account for all the space used, including the space we need to store  and 

O(log m) O(log m)

P T
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STREAMING K-MISMATCH

k3polylog m nk2polylog m

k2polylog m n kpolylog m

kpolylog m nkpolylog m

kpolylog m n kpolylog m

Space Time

Porat and Porat’09

Clifford, Fontaine, Porat, Sach, 
Starikovskaya’16

Golan, Kopelowitz, Porat’18

Clifford, Kociumaka, Porat’19

Golan, Kociumaka, Kopelowitz, Porat’20 s ⋅ polylog m n(k /s) ⋅ polylogm
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STREAMING K-MISMATCH

k3polylog m nk2polylog m

k2polylog m n kpolylog m

kpolylog m nkpolylog m

kpolylog m n kpolylog m

Space Time

Porat and Porat’09

Clifford, Fontaine, Porat, Sach, 
Starikovskaya’16

Golan, Kopelowitz, Porat’18

Clifford, Kociumaka, Porat’19

Golan, Kociumaka, Kopelowitz, Porat’20 s ⋅ polylog m n(k /s) ⋅ polylogm

Open question:

What’s  optimal space?
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APPROXIMATION ALGORITHM



PROBLEM FORMULATION

101

Given a text  of length , a pattern  of length , and a constant , for each 
-length substring of  output a number between  and , where  is 
the Hamming distance between the substring and 


T n P m ε > 0 m
T (1 − ε) ⋅ d (1 + ε) ⋅ d d

P

0 1 2 0 0 0 2 1 0 0 1 1 2 0 2

2 1 2 0 0

HD = 3, , 

output a number in [4,6]

ε = 1/3



WHAT DO WE KNOW?

n
ε2 polylogn

O( n
ε

log 1
ε

log n log m)

O( n
ε

log n log m)

O(n /ε2)

Time

Karloff’93

Kopelowitz and Porat’15

Kopelowitz and Porat’18

Chan et al.’20
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WHAT DO WE KNOW?

n
ε2 polylogn

O( n
ε

log 1
ε

log n log m)

O( n
ε

log n log m)

O(n /ε2)

Time

Karloff’93

Kopelowitz and Porat’15

Kopelowitz and Porat’18

Chan et al.’20

Open question:

Can the dependency on  be 

improved? 
ε
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ALGORITHM
KOPELOWITZ AND PORAT’18

ApproxHam( )


for  to 


do:  Pick a random 


compute 


return 

T[ j, j + m − 1], P, ε

i = 1 c log n

h : Σ → {1,2,…,
1
ε

}

xi = Ham(T[ j, j + m − 1], P)

max
1≤i≤c log n

xi
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CORRECTNESS

105

KOPELOWITZ AND PORAT’18




  (after applying , each mismatch remains a 

mismatch with probability )


d := Ham(T[ j, j + m − 1], P)

𝔼[xi] = (1 −
ε
2

) ⋅ d h

1 −
ε
2

𝔼[d − xi] =
ε
2

⋅ d



CORRECTNESS
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KOPELOWITZ AND PORAT’18




 and therefore 





Finally, the error probability 

d := Ham(T[ j, j + m − 1], P)

𝔼[xi] = (1 −
ε
2

) ⋅ d 𝔼[d − xi] =
ε
2

⋅ d

Pr[xi < (1 − ε) ⋅ d] = Pr[d − xi > ε ⋅ d] ≤
𝔼[d − xi]

εd
=

1
2

Pr[max
i

xi < (1 − ε) ⋅ d] ≤ 1/nc

Markov’s inequality



IMPLEMENTATION

107

KOPELOWITZ AND PORAT’18

After picking a hash function for an iteration , compute all text-to-pattern 

Hamming distances in time  using the algorithm for small 

alphabets!


Total time: 


i
O(

n
ε

log m)

O(
n
ε

log n log m)



TAKE HOME MESSAGE

• Exact algorithms for binary and general case (binary  time, general )


• No combinatorial algorithm in time  unless CMM conjecture is false


• -time algorithm via kangaroo jumps,  by combining kangaroo jumps + 
frequent characters + convolutions


• -time streaming algorithm that computes text-to-pattern Hamming distances 

bounded by  


• Approximation algorithm with runtime 

O(n log m) O(n m log m)

O(nm1/2−ε)

O(nk) O(n k log m)

n k polylogm
k

O(
n
ε

log n log m)
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TAKE HOME MESSAGE

• If you have further questions or would like to discuss one of the open problems 


• If you would like to do an internship (stage L3, stage M1) in this area (in France or abroad)


you can contact me via tat.starikovskaya@gmail.com 


Interesting event: 2nd Workshop Complexity and Algorithms (IHP Paris, 26-28 September)
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THANK YOU!

mailto:tat.starikovskaya@gmail.com

