TEXT-TO-PATTERN HAMMING DISTANCE

TATIANA STARIKOVSKAYA, MAITRE DE CONFERENCES ENS ULM

TEXT-TO-PATTERN HAMMING DISTANCE

We are given two strings (= sequences of letters from a finite alphabet): a text 1 of
length n and a pattern P of lengthm < n

The task is to compute the Hamming distance (= number of mismatches) between
each m- length substring of the text and the pattern

ol1]/2|o|oflol2[1/0/0l1]|1]2]|0]2

X

211121010

TEXT-TO-PATTERN HAMMING DISTANCE

We are given two strings (= sequences of letters from a finite alphabet): a text 1 of
length n and a pattern P of lengthm < n

The task is to compute the Hamming distance (= number of mismatches) between
each m- length substring of the text and the pattern

TEXT-TO-PATTERN HAMMING DISTANCE

We are given two strings (= sequences of letters from a finite alphabet): a text 1 of
length n and a pattern P of lengthm < n

The task is to compute the Hamming distance (= number of mismatches) between
each m- length substring of the text and the pattern

TEXT-TO-PATTERN HAMMING DISTANCE

We are given two strings (= sequences of letters from a finite alphabet): a text 1 of length n
and a pattern P of lengthm < n

The task is to compute the Hamming distance (= number of mismatches) between each m-
length substring of the text and the pattern

... and so on. A fundamental problem in algorithms on strings! Naive algorithm: O(nm) time.

BEFOREWE START

e | will speak in English, mais je parle francais
e |love questions! In English or in French, at any time

e There will be lots of exercises, please participate actively

OUTLINE

® Reminder: fast multiplication of polynomials via Fast Fourier Transform
® Exact algorithms for binary and general case

® |ower bound for combinatorial algorithms

® Kangaroo jumps

e Smaller space

® Approximation algorithm

REMINDER: FAST MULTIPLICATION OF POLYNOMIALS

Let me start with an algorithm for fast multiplication of polynomials

Half of you probably saw it last year, and half will see it this year

We will use it to compute text-to-pattern Hamming distances; it is also a basis of many
other great algorithms on strings

FAST MULTIPLICATION OF POLYNOMIALS

n—1 n—1
Consider P(x) = Z a,l-xi, O(x) = Z bixi
i=0 i=0
We can compute R(x) = P(x) + Q(x) = Z (a; + bi)xi in O(n) time
i=0
2n—2
Computing R,(x) = P(x) - Q(x) = 2 Z (a; - b)x naively requires O(n?) time
k=0 i+j=k

--

FAST MULTIPLICATION OF POLYNOMIALS

n—1
Coefficient representation: P(x) = Z ax’
i=0

Point-value representation: {(x,, y,), (x;, (), ---» (X,_1,V,_1)} such that P(x;) = y;

Theorem. For any set {(xy, Vo), (X1, Y1)s ---» (X,_1,V,,_1) }, where x; # X;, there exists a unique

polynomial of degree < n such that P(x;) = y;foralli =0,...,n — 1.

Given point-value representations {(xy, o), (X1, ¥{)s ---» (X,_1, V,,_1) } of P(x) and
LXos Y0)s (X1 Y1) s (X,_1, Y1) } Of P(x) and of Q(x), one can compute the point-value
representation of P(x) - O(x) in O(n) time

N

coefficient
representation

FFT

PW3), Owd)
P(w3,), O(wi,)

P(ws, ™), Q(wiy™")

point-value
representation

O logn) time

naive multiplication

FAST MULTIPLICATION OF POLYNOMIALS

O(n?) time

point-wise mult.

inverse FFT

O logn) time

O(n) time

W, = (2n)-th complex root of unity

BT 00
FAST MULTIPLICATION OF POLYNOMIALS

Theorem. For any set { (X, o), (X1, ¥1)s ---» (X,_1, Y,—1) 1, Where X; # x;, there exists a unique polynomial of
degree < n such that P(x;) =y, foralli =0,...,n — 1.

n—1

Proof. Let P(x) = Z aixi. We can represent the condition P(x;) = y;foralli = 0,...,n — 1 in the matrix

=0
form:

Vandermonde matrix,
determinant = I, i<, (X — X;)

I a,_ _
1x1x21 x”ll n—1 Yn—1

13

.
COMPLEX ROOTS OF UNITY

erf — e27rlk/n

n—1

Cancellation property: Wi = w, Summation property: Z (WX =0forallk #0 (mod n)

j=0

= cos 2zk/n + isin2zk/n Halving property: {(w,))%, (w))2, ..., (w3 D)2} = {w),w, ...

n—1

14

j

FAST FOURIER TRANSFORM

i=n—1
P(x) = Z a;x' — discrete Fourier transform {P(W,?),P(w,,}), ..., P(W"} (assume n = 2
i=0
Px)=a, x"'+a, x"*+..+ax+a,
P,x)=a, x""'+a X"+ .. +a P, ..x)=a, x"*"'+a x"1+ .. +aq

P(x) = xP, ,(x*) + P, (x%)

® Evaluate P, .(x)and P, (x) at (w,?)z, (w,%)z, s (w,’l’_l)2 recursively (by the halving property,
(W% W2 oy WD) = {W0), (91), s W27 Tn) = 27(1/2) + () = Olnlog

® Combine the results to compute {P(W,?), P(W,,}), o Pw))]

15

coefficient
representation

FFT

PW3), Owd)
P(w3,), O(wi,)

P(ws, ™), Q(wiy™")

point-value
representation

O logn) time

naive multiplication

FAST MULTIPLICATION OF POLYNOMIALS

O(n?) time

point-wise mult.

inverse FFT

O logn) time

O(n) time

W, = (2n)-th complex root of unity

INVERSE FOURIER TRANSFORM

i=n—1
Point representation {P(WY), P(w)), ...,P(w"} — P(x) = 2 ax'
i=0
1 | 1 |

0 n—1 “0 P(w))

1w, w, w, a, e

| w,% w,‘f w,f(”_l) dy | = (W)

z . i

[ol b2 D) a,_ P(w, ™)

. U
INVERSE FOURIER TRANSFORM

i=n—1
Point representation {P(w,?),P(w,}), ..., Pw))} = Px) = Z al-xi
i=0
I P(WD)
a, e
an.—l P(Wr’;l_l)

. U
INVERSE FOURIER TRANSFORM

Theorem. Vn_l[j, k| = wn_kj/n

Proof.
n—1 n—1 | | n—1 o
V'Vl g1 =) (VDL KV, 1=) w5 m)wi) =) (wi)
k=0 k=0 k=0

If ;" = j, the sum equals one. Otherwise, the sum equals zero by Summation property

1 n—1 .
Corollary. g; = " Z P(wHw 4 that s, 1a;} is a point-value representation of a polynomial
k=0

n—1
0(7) = Z ykzk and can be computed in O(7n log) time using Fast Fourier transform!
k=0

19

ALS OF DEGREE AT MOST » CAN BE MULTIPLIED IN o(n1ogn) TIME

20

ALL TEXT-TO-PATTERN HAMMING DISTANCES

PROBLEM FORMULATION

We are given two strings (= sequences of letters from a finite alphabet: a text 1" of length

n and a pattern P of lengthm < n

The task is to compute the Hamming distance (= number of mismatches) between each
m-length substring of the text and of the pattern

0|1

2

O

0|2

X
2

XX
12

22

CONSTANT-SIZE ALPHABETS

FISHER AND PATERSON'74

Our task is to develop an algorithm with running time O(nlog m).

Given two integer vectors A, B of lengths n and m, n > m, their convolution is defined as a vector C of length

m
n — m, where C[i] = ZA[i + m — j]|B[j]. Show an O(nlog m)-time algorithm for computing the convolution.
j=1

Given binary text T of length n and pattern P of length m. For a substring 7[i — m + 1,i] of the text, express the

number of matching ones between it and P in terms of a convolution. What about the number of matching
zeros and the Hamming distance?

Derive a O(nlog n)-time algorithm for computing the Hamming distances between all m-length substrings of
binary T'and P and a O(on log n)-time algorithm for strings over an alphabet of size 6.

23

GENERAL ALPHABETS

ABRAHAMSON'87

Let’s now develop an algorithm with running time O(n\/m log m)!

® |et's assume that n = 2m for starters. A letter of T is called frequent if it occurs at
least \/m log m times. Number of frequent letters is < 2\/m/10g m.

® How to compute the number of mismatches due to frequent letters in

O(my/mlog m) time?

24

GENERAL ALPHABETS

ABRAHAMSON'87

Our task is to develop an algorithm with running time O(n\/m log m).

e For each position 1 of P such that P[i] is not frequent mark at most \/m log m positions in

the text where PJi| and its occurrence in the text are aligned.

25

ABRAHAMSON'87

Our task is to develop an algorithm with running time O(ny/mlog m).

GENERAL ALPHABETS

e For each position 1 of P such that P[i] is not frequent mark at most \/m log m positions in

the text where PJi]| and its occurrence in the text are aligned.

v v/

.

l

26

GENERAL ALPHABETS

ABRAHAMSON'87

Our task is to develop an algorithm with running time O(n\/m log m).

e For each position 1 of P such that P[i] is not frequent mark at most \/m log m positions in

the text where PJi| and its occurrence in the text are aligned.

v v v
H B]

l

27

GENERAL ALPHABETS

ABRAHAMSON'87

Our task is to develop an algorithm with running time O(n\/m log m).

e For each position 1 of P such that P|i] is not frequent mark at most \/m log m positions in

the text where PJi] and its occurrence in the text are aligned. Total time: O(m\/m log m).

v v/ v
]

]
® \We can use the marks to compute the number of mismatches due to non-frequent letters

28

GENERAL ALPHABETS

ABRAHAMSON'87

e We can sum up the mismatches due to frequent and non-frequent letters in O(m)
time.

e This gives a O(m\/m log m)-time algorithm for the case n = 2m.

e Derive an O(ny/mlog m)-time algorithm for general n.

29

ALL HAMMING DISTANCES:
O(n log m) TIME FOR CONSTANT-SIZE ALPHABET AND O(14/m log m) IN GENERAL

BIG OPEN QUESTION: IS THERE A
FASTER ALGORITHM?

LOWERBOUND

COMBINATORIAL MATRIX MULTIPLICATION

Conjecture. For any a, f, v, € > 0, there is no combinatorial algorithm for multiplying an
n® X n” matrix A with an n” X n" matrix B in time O(n®*’+77%).

NB! It is not clear what does combinatorial mean precisely. However, FFT and so boolean
convolution often used in algorithms on strings are considered not to be combinatorial.

33

ENCODING MATRICES

Replace every 1in column j of A with j and every 1in row i of B with i

ENCODING MATRICES

Replace every O in B with O’

36

ENCODING MATRICES

N—-L+1 NeL+1 N—-L+1 N—-L+1

alolslo

For the sake of example, let’s recall that N = 4 and L = 3.

What can we say about the Hamming distance at a particular alignment of 7°and P?

37

ENCODING MATRICES

N—-L+1 NeL+1 N—-L+1 N—-L+1

2
[ol2lslo] + | + FRleTSTe]

#1112 |30 #

For the sake of example, let’s recall that N = 4 and L = 3.

What can we say about the Hamming distance at a particular alignment of 7°and P?

38

ENCODING MATRICES

N—-L+1 NeL+1 N—-L+1 N—-L+1

#NZ‘Q‘Z‘E‘Q\#

[1]olalo] -

For the sake of example, let’s recall that N = 4 and L = 3.

What can we say about the Hamming distance at a particular alignment of 7°and P?

39

ENCODING MATRICES

A row I of the 1st matrix and a column j of the 2nd matrix generate a match iff:

® They are perfectly aligned

e Thereis k such that the kth bit of A and the kth bit of B are 1

For any alignment of the pattern and of the text there is at most one aligned row-column
pair (length of a row+padding in the text is N + 1, a column+padding in the pattern — N)

P= [adzlslal (o2 oo+ [ONSHeN

40

ENCODING MATRICES

Length of P: (N — 1)(N — L) + NL = O(N?) = | P|

Can be computed in O(1) time!

Hamming distance =

lnon-# letters in P| + |[non-# letters in a [P|-length substring of T'| — |matches| < MN

By computing all Hamming distances, we can derive A X B!

41

ENCODING MATRICES

BASED ON GAWRYCHOWSKI AND UZNANSKI"18

By computing all Hamming distances, we can derive A X B!
|P| = (N —-1)(N-L)+ NL=0O(N?)
| T| =2N? 4+ MN+ (M = 1)(N = L+ 1) = O(MN)

Set M =n'=** N =L =n*? By the CMM conjecture, no combinatorial algorithm can
solve the problem in n!7¥?=% = | T| . \P\l/z_g timel!

r=#"loj2 s 0|+ [alofs o]+ [N """ 1|23 o |OUSMSI "
= [adadalal# o2 oo+ [0S0l

42

KANGAROO JUMPS

PROBLEM FORMULATION

Given a text 1 of length n and a pattern P of length m, compute the Hamming distance

between each m-length substring of 7'and P

0|1

2

O

0|2

X
2

XX
12

44

PROBLEM FORMULATION

Given a text 1 of length n and a pattern P of length m, compute the Hamming-distanece
between each m-length substring of 7'and P

ol1/2/o0|olo|2/1]l0lo[1]1]|2]0 2

XXX
2] 1]2

PROBLEM FORMULATION

Given a text 1" of length n, a pattern P of length m, and an integer k, compute the

minimum of k+1 and the Hamming distance between each m-length substring of 7°and P

0|1

2

O

0|2

X
2

XX
12

min(2, HD) =2

46

PROBLEM FORMULATION

In other words, if the Hamming distance d between a substring and the pattern
o <k, then we must output d

e otherwise, we can simply output kK + 1, which means that “the distance is too large”

Makes perfect sense in practice: why would you be interested in substrings that are too
far from your pattern?

This variant of the problem is called the k-mismatch problem

47

Suffix tree

© Sergey Konotoptsev

TRIE

Dictionary D = set of strings

Trie for D is a tree. Every edge of the trie is labeled with a letter so that:

For every node, outgoing edges are labeled with different letters.

For every string S € D, there is a root-to-node path that spells out
S. The end of the path is labeled with the id of .

Every root-to-leaf path spells out a string from D.

Space = O(total length of strings in D)

Example: D = {abc, bca, bcc, caa}

1

2

3

A

49

COMPACT TRIE

trie compact trie

SUFFIX TREE

Suffixes of a string T = banana:

T[1,6] = banana
T[2,6] = anana
T[3,6] = nana
T[4,6] = ana
T[5,6] = na

T[6,6] = a

5 ® T[3..]% = "nana$"

Q
$
@
® T[5..]% = "na%"
banana$
—® T[1..]$ = "banana$"
3
s\ %

© s

T[6..]$ = "a%" J

$ @ T[2..]$ = "anana%"
DT[4..]% = "ana%"

We append $ to each of the suffixes and build the compact trie for them.

51

Storing the labels on the edges can take O(| T\z) space.

To save the space, we represent each label as two numbers:
the left and the right endpoints of the label in 7.

Number of leaves: | T'|
Number of nodes: <2|T| -1

Number of edges: <2|T| -2

SUFFIX TREE

&\ ® T[3..]% = "nana$"

\\o1
\'5‘“\ :
® T[5..]% = "na%"
[1,6]
b —® T[1..]$ = "banana$"
;?/
T4
g\ Ny
© /6:6./

T[6..]$ = "a$

$ @ T[2..]$ = "anana%"
DT[4..]$ = "anad"

this is the final suffix tree!

eueueq = |

52

SUFFIX TREE

Can be builtin O(|T'|) time for any alphabet [Farach’97]

Exercise: How much time do we need to build a tree that
contains suffixes of the text 7 and the pattern P?

&\ ® T[3..]% = "nana$"

\\o1
\5‘0‘\ :
® T[5..]% = "na%"
[1,6]
b —® T[1..]$ = "banana$"
;?/
T4
g\ Ny
© /6:6./

T[6..]$ = "a$

$ @ T[2..]$ = "anana%"
DT[4..]$ = "anad"

this is the final suffix tree!

eueueq = |

53

LOWEST COMMON ANCESTORS

A tree of size O(n) can be processed in time

O(n) to support lowest common ancestor

(LCA) gqueries in constant time. [Fischer,
Hein'O6]

LCA(u, v) must return the lowest node that is

LCA(u,v)
an ancestor of both « and v.

54

KANGAROO JUMPS

How to decide if the Hamming distance between P and T at position i is at most k?

Imagine that there is an oracle that tells us the maximum ¢ such that

Tlk,k+7]=Plj,j+]in O(]) time.

Exercise: using the oracle, the question above can be solved in O(k) time.

90

. R
KANGAROO JUMPS

—>X > —>

How to decide if the Hamming distance between P and T at position i is at most k?

Imagine that there is an oracle that tells us the maximum £ such that

Tlk,k+7]=Plj,j+]in O(]) time.

Exercise: using the oracle, the question above can be solved in O(k) time.

56

KANGAROO JUMPS

—>X > —>

How to decide if the Hamming distance between P and T at position i is at most k?

Imagine that there is an oracle that tells us the maximum ¢ such that

Tlk,k+7]=Plj,j+]in O(]) time.

Exercise: using the oracle, the question above can be solved in O(k) time.

Exercise: implement the oracle using suffix trees.

57

KANGAROO JUMPS

e O(n+ m) = 0O(n)time and space to build the suffix tree containing the suffixes
of the pattern and the text

e On+ m)= 0O(n)time to preprocess it for lowest common ancestor queries
e (k) time per position to compute min(k + 1,Ham)

e ((nk)time and O(n) space in total!

58

K-MISMATCH
TIME O(nk), SPACE O(n)

. U
ARE THERE FASTER ALGORITHMS?

Time
Amir et al/04 O(H\/k log k)
v
Amir et al.04 O((n+— -k’ logk)) iy
m v
&
noo, o
Clifford et al/16 O((n + — - k7) polylogn) @
m <
QO

Gawrychowski and Uznanski’18 O((mlog”mlog|X| + k\/m logm) - n/m)

n
Charalampoupoulos et al. 20 O(n | . k*log log k)

. U
ARE THERE FASTER ALGORITHMS?

Time
Amir et al.'04 O(m/klog k)
g
Amir et al/04 O((n+— -k’ logk)) -
m D
&
14} o) o
Clifford et al/16 O((n + — - k7) polylogn) @
m <
Q

Gawrychowski and Uznanski’18 O((mlog”mlog|X| + k\/m logm) - n/m)

n
Charalampoupoulos et al. 20 O(n | . k*log log k)

O(m\/k log m) TIME

AMIRET AL.O4

e Small alphabet: Number of different characters in the pattern is at most 2\/%
e Medium-size alphabet: Number of different characters in the pattern is in [2\/% + 1,2k)

e Large alphabet: Number of different characters in the pattern is at least 2k

62

O(m\/k log m) TIME

AMIRET AL.O4
O(n\/% log m) time

(convolutions)

e Small alphabet: Number of different characters in the pattern is at most 2\/%
e Medium-size alphabet: Number of different characters in the pattern is in [2\/% + 1,2k)

e Large alphabet: Number of different characters in the pattern is at least 2k

63

O(m\/k log m) TIME

AMIRET AL.O4

Large alphabet: Number of different symbols in the pattern is at least 2k

a; a | 43 . Aok

3 %) l3 bk

Let ay, a,, ..., ay, be distinct characters in the pattern, and 1y, I,, .

the pattern

.., Iy, be the positions where they appear first in

v

Foreachi, 1 <i<n:ift,=a, markm+1 — 1

J! J

Discard all text locations with less than k£ marks

64

O(m\/k log m) TIME

AMIRET AL.O4

Large alphabet: Number of different symbols in the pattern is at least 2k ‘/

Foreachi, 1 <i<n:ift;=a, markm+1i— 1,

J! J

Discard all text locations with less than k marks a, a, | a iy

Total number of marks is n, hence the number of non-discarded positions is O(n/k)

The endpoint of every k-mismatch occurrence must have at least kK marks

n
Verification of non-discarded positions: 0(; - k) = O(n) time using kangaroo jumps

65

O(m\/k log m) TIME

AMIRET AL.O4

Medium-size alphabet: Number of different characters in the pattern is in [2\/% + 1,2k)

A character that appears in the pattern at least 2\/% times is called frequent

We consider two subcases:

e Number of frequent characters is at least \/%

e Number of frequent characters is less than \/l_c

66

O(m\/k log m) TIME

AMIRET AL.O4

Number of frequent (= occurs in the pattern at least 2\/% times) characters is at least \/l_c

Exercise: show that the number of k-mismatch occurrences is O(n/\/l_c)

67

O(m\/k log m) TIME

AMIRET AL.O4

Number of frequent (= occurs in the pattern at least 2\/% times) characters is at least \/l_c

Exercise: show that the number of k-mismatch occurrences is O(n/\/l_c)

® Hint 1: Use marks and the pigeonhole principle!

68

O(m\/k log m) TIME

AMIRET AL.O4

Number of frequent (= occurs in the pattern at least 2\/% times) characters is at least \/l_c

Exercise: show that the number of k-mismatch occurrences is O(n/\/l_c)

® Hint 1: Use marks and the pigeonhole principle!

® Hint2: Choose \/l_c frequent characters, and for each of them 2\/% occurrences in the
pattern

69

O(m\/k log m) TIME

AMIRET AL.O4

Number of frequent (= occurs in the pattern at least 2\/% times) characters is at least \/%
Exercise: show that the number of k-mismatch occurrences is O(n/\/%)
e We have O(n/\/z) possible locations of k-mismatch occurrences (locations with > k marks!)

e Each of them can be verified in O(k) time via kangaroo jumps (O(n\/z) in total)

Yes, but how do we find locations with > k£ marks?!! Let’s see...

70

O(m\/k log m) TIME

AMIRET AL.O4

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1,

and all other characters with O

v,
v
olofol1]1]0 1110
olo[1]o[1]1]0 0

What can we say about the number of marks at a particular location?

How to compute this number?

)

71

O(m\/k log m) TIME

AMIRET AL.04

Y

O

)

What can we say about the number of marks at a particular location? (# of matching ones!)

How to compute this number? (Use convolutions, O(7n log m) time)

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1,
and all other characters with O

712

O(m\/k log m) TIME

AMIRET AL.O4

Replace all chosen occurrences of a frequent character in the pattern and in the text with 1,

and all other characters with O v
O,0[0]1T]11]60 Soc O/ 110 Marking step takes O(n\/l_c log m) time
O/l0l1/0|1]1]0 O/ 1]/0|0

3) l3 bk

What can we say about the number of marks at a particular location? (# of matching ones!)

How to compute this number? (Use convolutions, O(7n log m) time)

73

O(m\/k log m) TIME

AMIRET AL.O4

Number of frequent (= occurs in the pattern at least 2\/% times) characters is less than \/l_c

e Mismatches caused by frequent characters can be computed in O(n\/l_c log m) time
(similar to the marking step we have just seen)

® \We must “only” compute the mismatches due to non-frequent characters...

A. Total number of occurrences of such characters is at least 2k

B. Total number of occurrences of such characters is less than 2k

74

O(m\/k log m) TIME

AMIRET AL.O4

Number of frequent (= occurs in the pattern at least 2\/% times) characters is less than \/l_c

e Mismatches caused by frequent characters can be computed in O(n\/l_c log m) time
(similar to the marking step we have just seen)

® \We must “only” compute the mismatches due to non-frequent characters...

Similar to the large

alphabets!

A. Total number of occurrences of such characters is at least 2k

B. Total number of occurrences of such characters is less than 2k

75

O(m\/k log m) TIME

AMIRET AL.O4

Mismatches due to non-frequent characters, total number of occurrences < 2k

ai a) as cee Qoce

3) 13 locc

® Sort all non-frequent characters

e Divide them into 0(\/%) blocks of size 2\/% so that one character appears only in one block

® Replace each character with the first character in its block (in the text and in the pattern)

76

O(m\/k log m) TIME

AMIRET AL.O4

Mismatches due to non-frequent characters, total number of occurrences < 2k

ai a) as cee Qoce

il i2 i3 iocc
e Compute all text-to-pattern distances using 0(\/%) convolutions (this accounts for all mismatches when a

text character and a pattern character are in different block) - O(n\/l_c log m) time!

® For each text character, account for at most 2\/% mismatches that appear when the character and the

aligned pattern character are in the same block - O(n\/% log m) time!

77

K-MISMATCH
TIME O(n7/ k log m), SPACE O(n)

SMALLERSPACE

EXACT PATTERN MATCHING

InEnnnDnnnnnne

Given a pattern of length m and a text of length n, find all occurrences of the pattern in the text

80

EXACT PATTERN MATCHING

® More than 80 algorithms known!

® Implemented in SMART, String Matching Algorithms Research Tool: https://smart-
tool.github.io/smart/

e Today we will discuss the algorithm of Karp and Rabin from 1987
® Again, some of you have probably seen it and some will see this year..

® Promise: | will show you a new, much simpler analysis

81

https://smart-tool.github.io/smart/
https://smart-tool.github.io/smart/

EXACT PATTERN MATCHING

KARP AND RABIN'87

The Karp-Rabin fingerprint of a string § = s;5,...s,, is defined as
m

P(S185,...5,) = Z s.- ¥ mod p,
i=1
where p is a prime and r is a random integer in I]:p.

It's a good hash function:
o If S =T, then ¢(S) = ¢(T); Let's zoomin...
o If § £ T while the lengths of § and T are equal,
then @(S) # @(T') with high probability (if p is large enough).

82

EXACT PATTERN MATCHING

KARP AND RABIN'87

Let S = §¢8,...5,, T = 1,1,...1,, and o be the size of the alphabet. Let p > max{o,n},

where ¢ > 1 is a constant.

p(S)=(T) & Y (s;— 1) r" modp =0
=1

m

Hence, ris a root of P(x) = Z (s;—1) - x, a polynomial over F,- The number of roots
i=1

of this polynomial is at most m. The probability of such event is at most m/p < 1/nc 1,

83

EXACT PATTERN MATCHING

KARP AND RABIN'87

e Compute the fingerprint of the pattern.

e Compare it with the fingerprint of each m-length substring of the text. If the

fingerprint of the pattern is equal to the fingerprint of a substring, report it as
an occurrence.

e The algorithm never misses an occurrence (no false-negatives)

e False-positives can happen with probability at most 1/nc1

84

EXACT PATTERN MATCHING

KARP AND RABIN'87

How to compute the fingerprints?
m

P(8155...5,) = Z s;- """ mod p
i?fnl This is why it's “rolling”!
— m—1
P(Sy...8,11) = Z S;p 17" 'mod p
i=1
Therefore, (s,...s, . 1) = (@(s;8y...5,) — s, - " - r+5s ., mod p.

We can compute the fingerprint of the (i + 1)-th m-length substring of the text from the
fingerprint of the i-th substring in O(1) space and O(1) time.

Karp-Rabin algorithm: O(1) extra space, O(1) time per letter of the text

85

1-MISMATCH

BASED ON PORAT AND PORAT'09

For a string X, define a string X! = X[q]X[q + r]|X[qg + 2r]...

o b

Xj = abc

.
1-MISMATCH

BASED ON PORAT AND PORAT'09

e Consider two strings X, Y of length m

e ()isthe set of log m smallest prime numbers. By the prime number theorem,
max Q0 < c - logmloglogm

o Foreachqg € Q,r € [F, consider substrings X, ¥,

87

1-MISMATCH

BASED ON PORAT AND PORAT'09

e If X =Y, what can we say about the number of mismatching pairs X’, Yc’]"?

e And if the Hamming distance between X, Y is one?

e \What if it is at least two?

88

1-MISMATCH

BASED ON PORAT AND PORAT'09

X X X
H B B EEEE.

Lemma. If the Hamming distance between X, Y is at least two, then for some
. r r & r
q € Qthereexistr,r, € F,r # rysuchthat X! # Y ,'and X > # Y 2.

Proof. Let m; < m, be the mismatch positions. If m; = m, = r (mod g), then
my —my : q.However,m > m, —my and 1l c,g > m. The claim follows!

89

1-MISMATCH

BASED ON PORAT AND PORAT'09

X X X
H B B EEEE.

e Assume someone tells you which pairs X’ Yc’]’ are equal.

® How can you use this to deduce whether the Hamming distance between
X, Y is one? Can you also deduce the mismatch position?

90

1-MISMATCH

BASED ON PORAT AND PORAT'09

H B B B B B BB NEEB®S
H B B NN N =

® |et's go back to computing text-to-pattern distances...

e Foreveryq € Q,r,r, € [run the Karp-Rabin algorithm for 7, ! and P,
e This algorithm tells, for every m-length substring S, whether Sc’]” = Pc’]”

e Time n - polylog m, (extra) space polylog m, error probability 1/n°¢

91

BN
K-MISMATCH

BASED ON PORAT AND PORAT'09

e Consider two strings X, Y of length m

o (isthe set of k? log m smallest prime numbers. By the prime number
theorem, max Q < ¢ - k*log mloglog m

o Foreachqg € Q,r € [F, consider substrings X, ¥,

92

K-MISMATCH

BASED ON PORAT AND PORAT'09

X X X
H B B EEEE.

Lemma. Let m,m,, ...,m,, £ < k, be mismatch positions between X, Y. For a fixed |
and all j # i there exists ¢ € Q) such that m; # m; (mod g).

Proof (idea). m; “spoils” g € Q if m; = m; (mod g). We have seen that m; can spoil at

J

most log m primes, and hence there are < (k — 1)log m spoiled primes in total. We
can take any unspoiled prime to satisfy the claim of the lemma.

93

BN
K-MISMATCH

BASED ON PORAT AND PORAT'09

S

B E Bl EE R e
H B B EE N -

e Foreveryq € Q,r,r, € Ik, run the 1-mismatch algorithm for Tgl and sz

e If the algorithm tells that the Hamming distance between §7, P(;’ Is one and outputs the mismatch
position, remember it!

® Fix all the mismatches output by the algorithm and check that the pattern equals § in O(k) time
using fingerprints

e Time nk” - polylog m, (extra) space k° - polylog m, error probability 1/n¢

94

K-MISMATCH
TIME 1k - polylog m, SPACE k> - polylog m

ISN'T THIS GREAT? YES, BUT...

® The algorithm we developed is randomised: we use Karp-Rabin algorithm

® \We have seen faster AND deterministic algorithms!

e |t uses L2(k polylog m) extra space, while all previous algorithms used £2(n) space

96

ISN'T THIS GREAT? YES, BUT...

Porat and Porat’09 also showed an O(log m) space, O(log m) time streaming algorithm for
exact pattern matching:

[[[[[[[[[[][]—>

In the streaming setting,

® the text arrives one letter at a time

e we account for all the space used, including the space we need to store P and T

97

STREAMING K-MISMATCH

Golan, Kociumaka, Kopelowitz, Porat20

Space Time
Porat and Porat’'09 k’polylog m nk*polylog m
Clifford, For\talne, Po,rat, Sach, Cpolylog m /Epolylog m
Starikovskaya'16
Golan, Kopelowitz, Porat”18 kpolylog m nkpolylog m
Clifford, Kociumaka, Porat’19 kpolylog m ny/kpolylog m
s - polylog m n(k/s) - polylogm

98

STREAMING K-MISMATCH

Starikovskaya'16

Space Time
Porat and Porat’09 k>polylog m nk*polylog m
Clifford, Fontaine, Porat, Sach, Cpolylog m /Epolylog m

Golan, Kopelowitz, Porat18

Open question:
kpolylog m What'’s optimal space? polylog m

Clifford, Kociumaka, Porat19

kpolylog m n\/zpolylog m

Golan, Kociumaka, Kopelowitz, Porat20

s - polylog m n(k/s) - polylogm

e

APPROXIMATION ALGORITHM

PROBLEM FORMULATION

Given a text T of length n, a pattern P of length m, and a constant € > 0, for each m

-length substring of T output a number between (1 —¢)-d and (1 + €) - d, where d is

the Hamming distance between the substring and P

0|1

2

O

0|2

X
2

XX
12

HD=3,¢ = 1/3, \
outputanumberin[4,6] _/

101

WHAT DO WE KNOW?

Time

Karloff'93

n
—polylogn
.

Kopelowitz and Porat’15

1
0(ﬁ log — log nlog m)
£ '3

Kopelowitz and Porat”18

0(2 log nlogm)
£

Chan et al.’20

O(n/e?)

102

WHAT DO WE KNOW?

Time

Karloff'93

n
—polylogn
.

Kopelowitz and Porat’15

1
0(ﬁ log — log nlog m)
£ '3

Open question:

Kopelowitz and Porat”18

Can the dependency on ¢ be

n improved?
O(— lognlogm)
€

Chan et al.’20

O(n/e?)

103

ALGORITHM

KOPELOWITZ AND PORAT"18

ApproxHam(7]j,j + m — 1], P, &)

fori = 1toclogn

1
do: Pickarandom#h : 2 — {1,2,...,—}
5

compute x; = Ham(Tlj,j + m — 1], P)

return max Xx,;
1<ilclogn

104

CORRECTNESS

KOPELOWITZ AND PORAT"18

d .= Ham(T|j,j +m — 1], P)

5
“[x.] = (1 — =) - d (after applying h, each mismatch remains a

2
€
mismatch with probability 1 — 5)
5

=[d — X] —5

105

CORRECTNESS

KOPELOWITZ AND PORAT"18

d .= Ham(71|j,j + m— 1], P)

Markov's inequality

“[x;] = (1 = %) - d and therefore E[d — x/] _g
_[d_xi] |
ed 2

Finally, the error probability Primaxx; < (1 —¢) - d] £ 1/n°

l

106

BN
IMPLEMENTATION

KOPELOWITZ AND PORAT"18

After picking a hash function for an iteration 1, compute all text-to-pattern

n
Hamming distances in time O(— log m) using the algorithm for small
'S

alphabets!

Total time: O(z log nlog m)
£

107

TAKE HOME MESSAGE

e Exact algorithms for binary and general case (binary O(n log m) time, general O(n\/m log m))

® No combinatorial algorithm in time O(nml/z_g) unless CMM conjecture is false

e (O(nk)-time algorithm via kangaroo jumps, O(n\/% log m) by combining kangaroo jumps +
frequent characters + convolutions

o n\/z polylogm-time streaming algorithm that computes text-to-pattern Hamming distances
bounded by k

n
e Approximation algorithm with runtime O(— log nlog m)
5

108

TAKE HOME MESSAGE

® |f you have further questions or would like to discuss one of the open problems
e |f you would like to do an internship (stage L3, stage M1) in this area (in France or abroad)

you canh contact me via tat.starikovskaya@gmail.com

Interesting event: 2nd Workshop Complexity and Algorithms (IHP Paris, 26-28 September)

THANK YOU!

109

mailto:tat.starikovskaya@gmail.com

