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Abstract 
Motivation: Stress processes are the cause of loss of performance of industrial cultures of bacteria. 

Synthetic biology provides the tools to address this problem but the discovery of stress-specific bi-

omarkers to identify and address the onset of a particular stress remains unsolved. 

Results: This work describes a new algorithm for the retrieval of stress-specific biomarkers that ap-

plies two sequential feature selection algorithms to high-throughput gene expression data in Bacillus 

subtilis. Then, an inverse C-element circuit is designed using a black box approach. As an in silico 

proof of concept of this design, the regulatory sequences of the top two oxidative stress biomarkers 

are set as inputs of this circuit with the objective of easing the stress. 
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1 Introduction  

Synthetic biology consists of the application of engineering approaches 

to life science aiming at the design of novel biological systems. For 

doing so, it requires from the integration of several disciplines that, alto-

gether, enable the coupling of biological parts, devices and circuits so as 

to make a target chassis able to fulfil a predefined specification. Synthet-

ic biology has been applied to the design of cell factories to produce 

high-value compounds (Mahalik, et al., 2014). Currently, the main or-

ganism used for the production of heterologous proteins in industrial 

processes is Escherichia coli (Demain and Vaishnav, 2009). However, 

Bacillus subtilis is widely used for homologous expression of enzymes 

and it provides several advantages over Escherichia coli in the heterolo-

gous production, such as the lack of endotoxins and a high secretion 

yield (Demain and Vaishnav, 2009).  

At present, there are several repositories that host functional infor-

mation about biological parts of E. coli and B. subtilis (Misirli, et al., 

2014), but there is still a need for more parts to expand the functionality 

of synthetic circuits. Moreover, the great complexity of the molecular 

interactions within the cells used as chassis and the lack of a host with 

minimum genome prevents the use of context-independent parts (Choe, 

et al., 2016). Therefore, the increase of the pool of available genetic parts 

for B. subtilis goes through the specific characterisation of its endoge-

nous regulatory mechanism. 

One of the areas were the application of synthetic biology would be 

advantageous is in the track and control of cellular stress. High-yield 

engineered bacteria often suffer from stress processes that activate feed-

back responses that diminish both cellular growth and recombinant pro-

tein production (Mahalik, et al., 2014). Some attempts have been made 

to overcome this stress response in B. subtilis (Carneiro, et al., 2013; 

Ceroni, et al., 2015); nevertheless, none of them managed to dynamically 

respond to specific changes in the host’s metabolism. 

The stress response is a natural mechanism of adaptation to changes in 

the environment that decrease the fitness of the organism (Sulmon, et al., 

2015). The presence of an external stressor is a threaten to the survival of 

the cell as it causes metabolic imbalances that, eventually, can lead to  

death (Sulmon, et al., 2015). Nevertheless, cells are able to fight back 

activating intracellular signalling pathways so as to adapt to the new 

suboptimal growth conditions (de Nadal, et al., 2011). 

The stress response can be divided into two categories: a generic re-

sponse that provides cross-protection against several stressors and a 

specific adaptive response, in which cells specifically respond to one 

stressor (de Nadal, et al., 2011; Price, et al., 2001; Sulmon, et al., 2015). 

The generic response genes are typically involved in primary metabo-

lism, transport and detoxification, protein homeostasis, intracellular 

signalling and DNA repair (de Nadal, et al., 2011). Although the same 

stress affects similar processes across the tree of life (Sulmon, et al., 

2015), the stress adaptive response greatly depends of the organism, its 

life-cycle stage (de Nadal, et al., 2011) and the specific stressor. 

After the stressor has been sensed and the signal has been transduced, 

the most immediate cellular responses are post-translational modifica-

tions (PTM), which provide a rapid defence against stress, whereas gene 

expression regulation provides long-term adaption to stress (de Nadal, et 

al., 2011). As a result, gene expression changes are a major mechanism 

in cells adaptive response to stress (de Nadal, et al., 2011). 

1.1. Bacillus subtilis’ stress response 

B. subtilis responds to harsh conditions using a battery of mechanisms 

that include cell specialisation (genetic competence and sporulation), as 

well as stress-specific responses to protect, repair and detoxify the cell 
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(Zuber, 2009). Generally, σB is the sigma factor that recognises the pro-

moters of genes related to stress protection (Hecker and Volker, 1998; 

Schumann, 2003; Zuber, 2009). 

Among the adaptive stress response, oxidative and heat-shock re-

sponses are commonly activated in overproduction strains and they are 

one of the main agents responsible for their loss of productivity 

(Hoffmann and Rinas, 2004). Therefore, it would be desirable to wire 

these responses to the production of the overexpressed gene so as to 

switch off its transcription when the stress response is active. 

1.1.1.Oxidative stress response in B. subtilis 

Oxidative stress is the biological condition caused by the exposure of a 

cell to oxidising agents that are able to take electrons from biomolecules 

such as DNA and redox enzymes, damaging their structure, disrupting 

their functionality and leading to mutagenesis and cellular death (Zuber, 

2009). Among these agents, Reactive Oxygen Species (ROS) such as O2
- 

and H2O2 are normally generated as by-products of aerobic metabolism 

(Imlay, 2015), especially in strains with great energy expenses, such as 

industrial strains. B. subtilis contains enzymes to degrade ROS (superox-

ide dismutases, peroxidases and catalases) (Imlay, 2015). Nevertheless, 

oxidising agents can also have an external source, for example, the herb-

icide paraquat is able to trigger the production of O2
- and H2O2, while 

diamide is able to directly oxidise thiol groups of proteins (Kashyap, et 

al., 2014). 

ROS can disrupt cellular structures and metabolism through different 

targets, such as exposed [4Fe-4S]+ clusters and thiols from cysteine 

residues in proteins (Zuber, 2009). [4Fe-4S]+ clusters are typically found 

in the active centres of redox enzymes, where ROS are able to under-

coordinate Fe2+. Fe2+ is subsequently oxidised to Fe3+ as a consequence 

of the intracellular redox imbalance, which in turn leads to the produc-

tion of hydroxyl radicals that have the potential to damage most biomol-

ecules and to cause mutations (Herbig and Helmann, 2001; Imlay, 2015; 

Zuber, 2009). Furthermore, ROS are able to disrupt the oxidative metab-

olism of the cell due to their electron-scavenging activity (Imlay, 2015).  

In B. subtilis the treatment with paraquat and H2O2 triggers the ex-

pression of the operons repressed by PerR, Fur, Spx, OhrR and CymR, 

among others (Helmann, et al., 2003; Tam, et al., 2006; Tanous, et al., 

2008; Zuber, 2009). Fe2+ is normally sensed by Fur and PerR, two re-

pressors of the expression of the iron uptake proteins (Zuber, 2009). Fur 

and PerR are not able to recognise Fe3+, the main valence of iron after 

exposure to ROS, leading to an increase in the uptake of iron during 

oxidative stress, which promotes the disruption of more cellular struc-

tures (Lee and Helmann, 2006; Varghese, et al., 2007; Zuber, 2009). 

1.1.2. Heat stress response in B. subtilis 

The exposure to high temperature increases the likelihood of proteins to 

reach non-native conformations, not usually functional and with tenden-

cy to aggregation (Schumann, 2003). B. subtilis copes with the heat 

stress regime upregulating the expression of chaperones and proteases; 

chaperons prevent the denaturalisation of proteins, while proteases de-

grade proteins in their non-native conformation (Schumann, 2003).  

B. subtilis’ heat response cascade is induced above 48ºC and it is 

started by direct sensors, i.e. RNA and proteins that have a temperature-

dependent conformation; and indirect sensors, i.e. chaperones that modu-

late the activity of transcription factors and are titrated by denatured 

proteins (Schumann, 2003). 

1.2. Supervised machine learning for feature selection 

The gene expression intensity under different conditions can be used to 

explore which genes (hereafter also called features) respond specifically 

to a particular stress and can be considered stress-specific biomarkers. 

The regulatory sequences of these genes could be used as inputs to re-

wire the stress response so as to improve cellular fitness. 

Bacillus subtilis subsp. subtilis str. 168 has a total of 4,421 CDSs 

(Coding DNA Sequence) (NC_000964.3 NCBI) and most of them would 

either not be related to stress or be part of the generic stress response. 

Moreover, the increased complexity, the cross-talk between parts and the 

detrimental effects of stochastic processes in the wiring would diminish 

the efficiency of a circuit with more than 2 inputs. Consequently, a fea-

ture selection procedure is needed to decide which features are able to 

explain most of the changes between stress and control conditions. 

Feature selection algorithms fall into four categories: filters, wrappers, 

embedded and hybrid methods, which combine different strategies 

(Bolon-Canedo, et al., 2014). Embedded methods are a trade-off between 

wrappers and filters: they have a closer interaction with the classifier 

than filters, while keeping a smaller computational cost than wrappers 

(Bolon-Canedo, et al., 2014). Recursive Feature Elimination (RFE) is an 

embedded method extensively applied to gene expression analysis due to 

its performance (Bolon-Canedo, et al., 2014). It consists of iteratively 

training a classifier and removing the feature with the lowest score on 

each iteration (Bolon-Canedo, et al., 2014).  

Feature selection algorithms depend on classifiers to rank features ac-

cording to their importance to distinguish groups of samples. The most 

popular classifier applied to RFE is Support Vector Machine (SVM), but 

other common classifiers such as Random Forest (RF) could also be 

utilised (Granitto, et al., 2006).  

Random Forest is an ensemble classifier in which several decision 

trees are built from a training dataset, forming a forest. It is frequently 

used due to its simple theory, high speed, stability, robustness and small 

model overfitting (Chen, et al., 2013). It is a bagging method as each tree 

is built from a bootstrap sample drawn from the training set with re-

placement (Breiman, 2001). Inside each decision tree, each split is 

picked from a random subset of features using the gini impurity index to 

decide which feature is able to divide the bootstrap sample into purer 

subsets (Breiman, 2001; Pedregosa, et al., 2011). Once it is built, RF is 

used to classify a test set according to the mode of the prediction for each 

tree in the forest (Pedregosa, et al., 2011). 

SVMs are commonly used for the analysis of high-throughput biolog-

ical experiments as they possess a good classification accuracy keeping 

the computational cost low, although they tend to overfit models (Bolon-

Canedo, et al., 2014; Fang, et al., 2012; Guyon, et al., 2002). SVMs 

project each sample in an n-dimensional space as an n-dimensional vec-

tor, where n is the number of features. Then, they draw the hyperplanes 

able to separate samples belonging to different groups. The selected 

hyperplane is the one with the maximum margin, this is, the greatest 

distance between the nearest training samples belonging to different 

groups, or support vectors. Consequently, the features that determine to 

the position of support vectors are the ones that contribute more to the 

classification (Granitto, et al., 2006; Guyon, et al., 2002; Pedregosa, et 

al., 2011; Scholkopf and Smola, 2001). SVMs use different kernels to 

compute the margins but linear kernels provide the best results in terms 

of speed and accuracy in tasks with a small ratio groups/features 

(Granitto, et al., 2006; Scholkopf and Smola, 2001). The problem arises 

when the training samples belonging to different groups are not linearly 

separable and some of them are misclassified. The soft-margin approach 

is used in this case, which employs the parameter C, or penalty of the 

error term, to decide which is the best trade-off between margin maximi-



Deriving stress-specific biomarkers for Bacillus subtilis 

zation and misclassification minimization (Scholkopf and Smola, 2001). 

Low values of C retrieve a greater margin, whereas high values tend to 

classify all training samples correctly (Scholkopf and Smola, 2001). 

The heuristic RGIFE (Ranked Guided Iterative Feature Elimination) 

was used as a first approach for finding the minimum subset of features 

able to classify control and stress samples with the maximum accuracy. 

RGIFE is a feature selection algorithm that iteratively removes groups of 

features until the performance of a RF classifier does not improve (Swan, 

et al., 2015). It usually returns more than two features; hence, another 

feature selector needs to be sequentially applied to reduce the number of 

features in detriment of the classifier’s performance. Here, two feature 

selection strategies will be tested, RF-RFE and SVM-RFE. 

1.3. Parameter optimisation 

Computational operations have a great dependence on parameters of 

unknown value. However, these parameters can be determined optimis-

ing the result of a fitness or objective function given a set of constrains. 

Analytic procedures are the methods of election when the exact optimal 

value of the parameter needs to be found and the fitness function is sim-

ple enough. Nonetheless, for more complex functions, each value of the 

parameter has to be evaluated using an exhaustive optimisation. Exhaus-

tive methods are not always possible since the computational expense 

increases exponentially for multiparametric optimizations or when the 

fitness function is stochastic. In these cases, heuristic optimisation meth-

ods, which retrieve an approximation of the optimal value, are utilised. 

Simulated annealing is a stochastic global optimisation heuristic that 

iterates over a range of values evaluating the fitness function. It accepts 

three constants: a maximum and a minimum temperature, the rate of 

decrease of the temperature per iteration and the search space of each 

parameter to be optimized. A new value of the target parameters, or 

state, will be accepted if the output of the fitness function is improved 

with respect to the previous accepted state, or reference state. Otherwise 

the new state could be still accepted with a probability proportional to 

the temperature and inversely proportional to the difference between the 

new and the reference value of the fitness function. The new state to be 

evaluated is selected among the neighbours of the reference state. In this 

way, the search is facilitated by high temperatures at the beginning to 

scape local optima, whereas at the end the temperature is lower and the 

heuristic turns to be greedier so as to converge to the global maximum 

(de Amorim, 2009). The search stops when the solution is considered 

good enough or after a pre-fixed number of steps. 

RF and SVM largely depend on two parameters, the number of trees 

in the forest (T) and the penalty of the error term in the soft-tail approach 

of SVM (C). Different optimization strategies of these parameters will be 

tested before the most discriminative features are retrieved. Then, these 

features will be used for the design of a genetic circuit. 

1.4. Genetic logic synthesis  

Genetic circuits are gene regulatory networks (GRN) that modulate an 

output response according to a set of input signals. They are composed 

by a set of genes and the set of their interactions arranged in gates to 

perform a defined logic function, similarly as electric circuits. Genetic 

logic can be implemented at different levels but transcriptional level, in 

which the interactions between genes involve the induction or repression 

of the binding of RNA polymerase (RNAP) to a promoter, is the one that 

currently offers more advantages (Vaidyanathan, et al., 2015). The com-

plexity of genetic logic circuits grows with the number of elements it 

contains (Chaouiya, et al., 2004), impeding the implementation of com-

plex behaviours such as sequential logic.  

Sequential logic circuits are characterised by their ability to set an in-

ternal state so that their output depends on both inputs signals and this 

internal memory (Lou, et al., 2010), similarly to a finite-state automaton. 

This behaviour allows sequential circuits to perform more sophisticated 

functions than combinatorial circuits, whose output only depends on the 

inputs received.  

Muller C-element is a sequential logic function resistant to transient 

fluctuations in the input signals. In a genetic context, it is able to set the 

expression of an output CDS to ON, or 1, when both inputs are active 

and to OFF, or 0, when there is no input. The robustness of this system 

comes from its memory, which enables it to keep the previous set state 

when only one input signal is present (Table 1). Several versions of a 

genetic C-element have been designed and simulated (Nguyen, et al., 

2010) but a black box implementation that could be coupled to any input 

is still pending. The design and digital simulation of this circuit using 

Petri nets would help in its logic synthesis. 

 

Table 1. Truth table for a Muller C-element 

Input A Input B Output 

0 0 0 

0 1 Hold 

1 0 Hold 

1 1 1 

 

Manual design is currently the most effective technique for sequential 

circuits (Nielsen, et al., 2016). This is an error-prone process, especially 

for complex circuits. In this context, the application of Petri nets suppos-

es a benefit in both the design and the testing steps of the genetic logic 

synthesis. Petri nets are place-transition automata composed by a set of 

places or states and a set of directed transitions between places. Each 

place can accept a fixed number of tokens that are able to trigger or 

impede the transition to another place (Chaouiya, et al., 2004). Petri nets 

provide an scalable and standardized platform for representing GRN, 

where genes are places, transitions are transcriptional interactions and 

tokens are transcription factors (Bonzanni, et al., 2014). Furthermore, 

they provide a flexible platform that can be used to model and simulate 

Boolean, continuous, hybrid and stochastic systems (Heiner and Gilbert, 

2013). Currently, the main application of Petri nets in biology is the 

analysis of biological pathways (Bonzanni, et al., 2014; Chaouiya, et al., 

2004), but their utilisation in the design, analysis and simulation of syn-

thetic circuits is at a preliminary stage, with some examples such as a 

model of a repressilator (Heiner and Gilbert, 2013). 

1.5. General aim 

Recently, stress processes in industrial strains have gained attention of 

the scientific community as a way to improve productivity. In vivo moni-

tors of metabolic stress have been implemented for B. subtilis (Smith, et 

al., unpublished) and E. coli (Ceroni, et al., 2015); however, they are 

only fluorescence-based sensors not able to wire cellular responses to-

wards the relief of the stress. Consequently, the aim of this work is to 

create a reproducible algorithm to derive gene markers whose expression 

can be used to monitor a specific stress. Then, a genetic inverse C-

element will be designed as a black box using an orthogonal system of 

transcriptional repressors so as to connect it to any transcriptional pro-

cess. As a proof of concept of the pipeline, the oxidative stress bi-

omarkers of B. subtilis will be retrieved and set as the input of the circuit 

so as to control the output of a burdensome protein.  
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2 Methods 

2.1. Data sources 

Six exponential cultures of B. subtilis subsp. subtilis str. BSB1 (similar to 

Bacillus subtilis subsp. subtilis str. 168 for the purpose of this study) 

grown at 37ºC, of which 3 samples had been exposed to 0.1mM H2O2 

10min, had been subjected to mRNA sequencing using IonTorrent plat-

form and its recommended protocol. The subsequent reads had been 

quality assessed and trimmed using FastQC (Andrews, 2010) with cut-

offs between 19 and 249. Then, they had been aligned against B. subtilis’ 

reference genome (AL009126.3) using Bowtie2 2.2.2 (Langmead, et al., 

2009). The number of reads per CDS had been quantified using HTseq-

count routine (Anders, et al., 2015) and they were the starting point of 

this analysis. 

The 169 NimbleGen tiling microarray samples had been hybridized 

with cultures subjected to different experimental conditions, including 

anaerobic growth, glucose depletion and starvation, high and low phos-

phate concentration, high (3 samples at 48ºC and 3 samples at 51ºC) and 

low temperature, high NaCl osmolarity, presence of ethanol or mitomy-

cin C and 18 samples subjected to oxidative stress induced by 0.5mM 

diamide 15min (6 samples), 0.6mM diamide 10min (3 samples), 0.4mM 

paraquat (3 samples) or 0.1mM H2O2 (3 samples) (Nicolas, et al., 2009). 

BacillusRegNet dataset is a GRN that contains a total of 1264 regula-

tory interactions between 861 genes in B. subtilis 168 (Fig. 1). Interac-

tions between genes that do not encode proteins are not included (Misirli, 

et al., 2014). 

Fig. 1. Global layout of BacillusRegNet data displayed in Cytoscape. 

2.2. Operating system, programming languages and 

software 

Ubuntu 14.04.1 was executed in Windows 8 using the virtual machine 

VMware Workstation 12 with 1GB of RAM, 1 processor and 100GB of 

hard disk space. The programming languages used were R 3.3.0 written 

through the IDE (Integrated Development Environment) RStudio 

0.98.1062, Python 2.7 through the IDE Spyder 2.3.9, and Java 8.0 in 

Eclipse Neon 4.6.0. Anaconda (Analytics, 2015) was used for installing 

new packages and as the platform for running Python 2.7. Cytoscape 

3.3.0 was utilized to create the plots of the GRN and to execute jAc-

tiveModules, which enables the obtainment of subnetworks containing 

differentially expressed genes (Ideker, et al., 2002). Workcraft 3.1.0 was 

used for the design and modelling of the C-element circuit and its Petri 

net (Poliakov, et al., 2009). 

 

Table 2. Packages used in this work 

Package Lan-

guage 

Usage Reference 

numpy 1.10.4 Python Numerical computa-

tion 

(van der Walt, 

et al., 2011) 

scipy 0.17.1 Python System specific pa-

rameters and functions 

(van der Walt, 

et al., 2011) 

random Python Pseudorandom num-

bers 

Standard library 

sys Python Access  to system Standard library 

Classifi-

ers_module 

Python  RF and SVM This work 

os Python Operating system 

interface 

Standard library 

rpy2 2.7.8 Python Run R in python (Belopolsky, et 

al., 2014) 

matplotlib 1.5.1 Python Boxplots (Hunter, 2007) 

csv 1.0 Python Read-write CSV files Standard library 

collections Python Container of datatypes Standard library 

sklearn 0.17.1 Python Machine learning (Pedregosa, et 

al., 2011) 

simanneal2 Python Simulated annealing (Perry and 

Wagner, 2014) 

re Python Regular expressions Standard library 

GOSemSim 

1.30.2 

R Score GO terms (Yu, et al., 

2010) 

preprocessCore 

1.34  

R Quantile normalization (Bolstad, 2016) 

sva 3.20.0 R ComBat for batch 

effects correction 

(Leek, et al., 

2016) 

2.3. Biomarker retrieval algorithm 

2.3.1. Integration of gene expression datasets 

The entries corresponding to the 855 CDSs common to all datasets 

(RNA-seq, microarray and BacillusRegNet) were kept for the analysis. 

Firstly, the gene symbols, or human-friendly gene identifiers in NCBI 

database, were converted into locus tags, the identifier of the loci, using 

the database MicroScope for the reference genome of Bacillus subtilis 

subsp. subtilis str. 168 as conversion key (www.genoscope.cns.fr). It was 

taken into consideration that symbol tags were contained in two different 

columns of the MicroScope’s tab separated file and that some entries 

contained more than one gene symbol per tab slot. When the search was 

not successful, the locus tag was sought in BacillusRegNet table since it 

contains both locus tags and gene symbols. The gene symbols ymfK, 

dnaE and rsfA were manually assigned to their locus tag. As a result, 

entries with paralogous CDSs that use the same symbol tag were as-

signed to more than one locus tag. Finally, the entries of RNA-seq and 

microarray datasets were merged using locus tags as identifiers (Till-

ing_RNA_final_arg.R), resulting in two tab separated files: the RNA-seq 

and microarray expression profiles, from which the stress-specific bi-

omarkers were derived, and the reduced version of BacillusRegNet da-

taset, which was used for plotting the genetic interactions of these bi-

omarkers. 

The gene expression data were pre-processed in order to make the 

values of the RNA-seq and microarray gene expression comparable. The 

different approaches tested contained one batch correction and at least 

one normalization step (Normalisation_trials folder). In the normaliza-

http://www.genoscope.cns.fr/
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tion, the process that homogenizes the scale of the expression data, two 

different methods were tested: minimum-maximum normalization (min-

max) and quantile normalization (QN). Min-max normalization adjusts 

the distribution of each experiment to a scale of [0, 1] (1) (Chen, et al., 

2013). It was selected as a simple and computationally affordable meth-

od of scaling data (Chen, et al., 2013). Alternatively or in conjunction 

with it, QN was applied since it is currently the best method to correctly 

cluster different microarray samples keeping the biological variation 

among genes’ expression (Muller, et al., 2016). QN equalizes the expres-

sion intensity of the genes in the same quantile among samples, provid-

ing the same boxplots for all the samples (Table 2) (Muller, et al., 2016). 

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
    (1) 

Batch effects are technical artefacts not related to the system under 

evaluation but with the external conditions in which the experimentation 

is conducted (Muller, et al., 2016; Sun, et al., 2011). It has been probed 

that normalization is not enough to remove batch effects (Muller, et al., 

2016; Sun, et al., 2011). RNA-seq and microarray experiments determine 

the expression intensity of each locus using radically different proce-

dures: while RNA-seq sequences mRNA, microarrays hybridize it to 

probes on a chip. Therefore, the differences in the expression data arising 

from the different experimental settings do not have a biological origin 

and they can be associated to the variability between to two different 

batches. In this way, the differences between RNA-seq and microarray 

expression data were corrected using the Combat function from R sva 

package (Table 2). This function takes into account that the bias of a 

batch is common across all its samples to estimate a batch parameter 

utilized for correcting the batch effects with an empirical Bayesian 

method (Johnson, et al., 2007).  

In order to check the degree of integration of RNA-seq and microarray 

samples during the different pre-processing tests, Ward’s hierarchical 

agglomerative clustering algorithm with Euclidean distance was used 

(Ward, et al., 2001). Similarly, the equivalence of the distribution of the 

expression data among samples was checked using boxplots. 

Once the best pre-processing technique was selected, technical repli-

cates were averaged and stress samples were tagged as STRESS inde-

pendently of the time point when the sample was drawn. In this way, the 

biomarkers retrieved are indicative of the exposure to the specific stress-

or and not of a temporary response (Scale_Normalise_batch.R).  

According to the central limit theorem, the distribution of a random 

variable tends to a Gaussian distribution for a high number of samples; 

therefore, it was assumed that the expression values of each gene were 

normally distributed for CONTROL and STRESS groups and a two-

tailed Student’s t-test was applied to obtain the degree of differential 

expression of a feature in terms of p-values, this is, the probability of 

rejecting the null hypothesis (the expression does not change between 

stress and control samples) when it is true. 

2.3.2.  RGIFE heuristic 

The gene expression matrix containing SAMPLE and CONTROL tags 

was transformed into .arff format (To_arff.R). The parameters set as 

input to RGIFE were selected for it to be highly restrictive: one repeti-

tion of a 10-fold distributed-balanced stratified cross-validation scheme, 

which assigns close-by samples to different folds so each fold contains 

representatives of every cluster (Zeng and Martinez, 2000), one misclas-

sified sample to identify a soft tail, random forests with 3000 trees and a 

maximum depth of five and a misclassification cost of one (Lazzarini et 

al., unpublished(Swan, et al., 2015). The metric used to evaluate the 

performance of the classifier was “robust_accuracy”, which divides the 

overall number of correctly classified samples across folds by the total 

number of test samples. The biomarkers resulting from 10 executions of 

RGIFE were unified so as to obtain a broader range of biomarkers using 

the polices.py option of RGIFE (Lazzarini, et al., unpublished). 

2.3.3.  RF-RFE and SVM-RFE 

RF-RFE and SVM-RFE were utilized in order to select the features 

whose expression is more distinctive of stress or control conditions. Both 

were executed 200 times so as to return the frequency of each feature 

being selected as the most discriminative biomarker. 

For RF-RFE, RF classifier was executed using the function 

sklearn.ensemble.RandomForestClassifier (Table 2) with the recom-

mended parameters (scikit-learn.org): size of the random subset of fea-

tures checked for each node set to the square root of the total number of 

features and each tree spanned until pure leaves. The number of trees in 

the forest (T) was 10 when checking the performance of the pre-

processing schemes, otherwise it was optimized since the documentation 

did not provide an adequate value for it. RFE was manually implemented 

with gini impurity index as the ranking criterion and one feature re-

moved per iteration (Breiman, 2001; Chen, et al., 2013; Pedregosa, et al., 

2011). 

For SVM-RFE, SVM classifier was executed with a linear kernel us-

ing the function sklearn.svm.LinearSVC() with the default parameters. 

The penalty assigned to the error term (C) was one in the pre-processing 

schemes, otherwise it was subjected to optimization. The weight of each 

feature in the margin’s location was used as scoring criterion by the RFE 

executed with the function sklearn.feature_selection.RFE() with one 

feature removed per iteration. The scripts to execute RF-RFE and SVM-

RFE were stored as the Python’s module Classifiers_module (Table 2), 

which is also able to directly run from shell. 

2.4. Visualization of the GRN of biomarkers in Cyto-

scape 

The number of entries of BacillusRegNet dataset was reduced to the 

subset of interactions in which the biomarkers resulting from RGIFE 

participated (RGIFE_to_cytoscape.R). This network was uploaded into 

Cytoscape using the instructions in Cline, et al., 2007. Nodes’ key attrib-

ute was the gene symbol and edges tip distinguished between positive 

interactions (arrow tip), negative interactions (T tip) and sigma factor 

(straight line). The target binding sequence was included as an edges’ 

attribute. The nodes corresponding to the genes retrieved by RGIFE were 

represented in a different color. From them, the genes also retrieve by the 

RF-RFE and SVM-RFE in more than 10% of the executions were high-

lighted. The housekeeping sigma factor σA was removed of some plots so 

as to improve the clarity. The Cytoscape’s plugin jActiveModules was 

executed to retrieve highly significant subnetworks importing the p-

values of the Student’s t-test analysis as node’s attribute (Ideker, et al., 

2002). 

2.5. GO scoring 

GO defines standard terms to refer to the domains Molecular Function, 

Biological Process and Cellular Component, which reflect to the ele-

mental function, biochemical process and subcellular location of the 

protein encoded by a gene (www.geneontology.org). Terms are orga-

nized as a directed acyclic graph, where each term can share parent-child 

relationships with others so that it is possible to calculate the distance 

between two GO terms (www.geneontology.org). 

http://www.geneontology.org/
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Therefore, the GO score used as fitness function of the optimization 

step was defined as the semantic proximity between the GO terms of the 

biomarkers retrieved by RF-RFE or SVM-RFE and the biotic and abiotic 

stress GO term GO:0006950 with its 33 child terms. This score was 

calculated using the function mgoSim from the R package GOSemSim 

(Table 2) with Wang’s distance, which utilizes the topology of the GO 

graph to compute the distance between terms (Wang, et al., 2007). The 

only GO domain considered was Biological Process since it contains the 

stress terms. Then, the scores of all the GO terms of the same biomarker 

were combined using “max” method, which only keeps the maximum 

score. This method was selected as some biomarkers might be multifunc-

tional, so the GO associated to non-stress functions would decrease their 

total score. 

2.6. Optimization of the classifiers 

As a first attempt, simulated annealing was utilized to optimize the pa-

rameters T of RF and C of SVM using the GO scoring as fitness func-

tion. The neighbors of each accepted state were the values ±10 positions 

away of it, the feature selection was executed 200 times and the most 

explanatory classifier on each execution was returned. The maximum 

temperature was set to 0.5, minimum temperature to 10-5 and the number 

of steps to 30. For T, the optimization was carried out between 5 and 50 

trees (optimisation_rforest.py), whereas for C the range of values 

spanned from 0.1 to 4.6 in steps of 0.1 in order to discretize and equalize 

the search space of T (optimisation_SVM.py). 

Then, a brute-force or exhaustive search algorithm was implemented 

and applied to obtain the best parameter using the same search spaces as 

in simulated annealing. This algorithm executes the 200 iterations of the 

feature selection routine three times per value of the target parameter and 

then it creates a boxplot showing the median and the two extreme values 

as the whiskers using the Python’s package matplotlib (Table 2). 

2.7. Genetic circuit modelling and synthesis 

A genetic C-element was manually designed using the guidance of the 

majority gate circuit kindly provided Dr. Khomenko using Workcraft 

(Poliakov, et al., 2009) (Fig. 2). The translation of the majority gate into 

a genetic-implementable circuit was carried out at a transcriptional level 

harnessing the library of repressors orthogonal to TetR described to be 

functional in E. coli and mammal cells (Stanton, et al., 2014; Stanton, et 

al., 2014). This approach ensures that the C-element black box could be 

plugged to any input or output signal in B. subtilis as long as none of the 

repressors is present in the chassis. The repressors that had less toxicity 

and did not belong to Bacillus species were chosen.  

Fig. 2. Gate-level design of a majority gate C-element. Provided by Dr. Khomenko. 

 

The majority gate had to be inverted in order to turn off the expression 

of the output as a consequence of the onset of both input signals. Then, 

the circuit was transformed into a combination of NAND, NOR and 

NOT gates so that only repressors are needed for its genetic implementa-

tion. NAND gates were designed using different transcriptional units 

with the same coding sequence but each of them regulated by one of the 

repressible promoters set as inputs of the gate. NOT gates were designed 

using a single transcription unit encoding a repressor and regulated by an 

input repressible promoter. Lastly, NOR gates utilised a single transcrip-

tional unit in which the coding sequence was regulated by a constitutive 

promoter containing all the input repressible operators. CDSs that shared 

the same promoter were combined into a single transcriptional unit. The 

native Ribosome Binding Sequences (RBS) of each biomarker and the 

optimized RBS of the repressors (Stanton, et al., 2014) were used. 

Once the abstract design of the genetic C-element was accomplished, 

it was converted into a Petri net and digitally simulated using Workcraft 

(Poliakov, et al., 2009). Finally, the genetic design was written using the 

Synthetic Biology Open Language (SBOL) 2.0 (Bartley, et al., 2015), a 

data standard developed to computationally exchange synthetic biology 

designs (celement folder with the Java script to generate SBOL cele-

ment.sbol). In this way, this black box implementation can be easily 

reusable and visualised using VisBOL (McLaughlin, et al., 2016), a 

platform for the graphical visualisation of genetic designs. VisBOL 

platform uses the set of glyphs defined by SBOL Visual (Quinn, et al., 

2015) in order to standardise the representation of genetic circuit.  

2.8. Experimental approach 

Microarray and RNA-seq dataset contained samples corresponding to 

different stresses and growth condition. Samples not subjected to the 

stress under analysis were used as controls so as to ensure that the ob-

served differences are specific to the target stress and are not part of the 

general stress response. For example, when the oxidative stress was the 

target stress, the samples treated with diamide, paraquat and H2O2 were 

tagged as STRESS samples, whereas the remaining 154 samples were 

considered controls. 

3 Results 

All the scrips, documentation and a tutorial of the biomarker retrieval 

algorithm are uploaded into 

https://deliacp@bitbucket.org/deliacp/scripts.git. The biomarker retrieval 

algorithm was implemented using different programming languages 

wrapped using bash script, the language that automates the execution of 

Linux shell commands (bash_file). 

Fig. 3. Workflow of the stress-specific biomarker retrieval algorithm. A total of 855 

features remained after the integration of the three original datasets. The expression data 

were pre-processed and set as input to 10 RGIFE runs. An exhaustive optimization of T 

and C was run before the execution of 200 repetitions of RF-RFE or SVM-RFE with the 

union of the features retrieved by RGIFE. The regulatory sequences of the top two fea-

tures common to both routines were used as an input for a C-element circuit. 

 

The general workflow of the developed tool (Fig. 3 and 4) integrates 

the entries of RNA-seq, microarray and BacillusRegNet data. As a result, 

the 855 features kept were contained in all the datasets. The integrated 

RNA-seq and microarray data were subjected to a pre-processing step so 

https://deliacp@bitbucket.org/deliacp/scripts.git
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as to normalize and correct the batch effects. Then, 10 repetitions of 

RGIFE were executed with the expression data of these entries to obtain 

the set of features that are needed to distinguish between control and 

stress samples. To discern which feature was the most discriminative, a 

second feature selection was executed (RF-RFE or SVM-RFE) using the 

expression data corresponding to the features retrieved by RGIFE as 

input. On each step of RFE, the feature that had a smaller contribution to 

the result of the classifier is removed until only one was remaining. This 

feature was considered to be the one with the best discriminative power 

but the result may change for different executions of feature selection 

due to the stochasticity of the classifier. Consequently, SVM-RFE and 

RF-RFE were repeated 200 times to obtain the frequency of each feature 

being the most discriminative. This process was repeated three times per 

value of the target parameter during the exhaustive optimization. Finally, 

the regulatory sequences of the two features more frequently retrieved by 

both feature selection algorithms were used as inputs of a C-element able 

to ease the stress. During all the process, BacillusRegNet data was uti-

lized to plot the genes retrieved by the different feature selection algo-

rithms, highlighting regulatory cascades related to the target stress. 

 

Merge RNA-seq, microarray and BacillusRegNet entries 

Normalize, correct batch effects and label control and stress samples 

for 1 to 10 {Run RGIFE} 

Unite all the retrieved features 

for T in 5:50/for C in 0.1:4.6 with steps of 0.1 { 

        for 1 to 3 { 

                repeat 200 times {(RF/SVM)-RFE with T/C} 

                % times each biomarker is the most discriminative 

                GO_score}} 

Boxplot of the 3 GO scores per value of T/C 

Select the parameter with the highest score and lowest variance  

repeat 200 times {(RF/SVM)-RFE with the optimum T/C} 

Use the two biomarkers with the greater % as inputs in the genetic circuit 

Fig. 4. Sequence of eventes in the stress-specific biomarker retrieval algorithm. This 

process, except the last step, was executed through the attached bash_file file. 

 

Convert gene symbols into locus tags using the key in MicroScope { 

        Remove the entries with no locus tag 

        Merge the entries with the same locus tag} 

Remove entries of BacillusRegNet that are not in RNA-seq and microarray 

Remove entries of RNA-seq that are not in BacillusRegNet and microarray 

Remove entries of microarray that are not in RNA-seq and BacillusRegNet 

Merge RNA-seq and microarray using locus tags as keys 

Fig. 5. Workflow of the integration of RNA-seq, microarray and BacillusRegNet 

datasets. This step is contained in Tiling_RNA_final_arg.R 

3.1. Integration of the RNA-seq, microarray and Bacil-

lusRegNet entries 

3.1.1.Conversion gene symbols to locus tags 

For this step it was taken into account that each locus can have several 

gene symbols (for example, the locus BSU0003 is named as both rapA 

and yaaA) and some gene symbols can refer to several CDSs in different 

loci (ymfK is encoded in both BSU16890 and BSU16900). Once the 

conversion was carried out, the locus tags were utilized to reduce the 

three datasets to the subset of 855 common entries. RNA-seq and micro-

array profiles were merged into the gene expression matrix and Bacil-

lusRegNet data was used to plot the retrieved biomarkers (Fig. 5). 

3.2. Selection of the normalization method 

Three different tests were carried out since the order in which normaliza-

tion and batch correction are applied varies across literature (Sun, et al., 

2011). It has to be noticed that the microarray dataset was composed by 

169 samples, whereas there were only six RNA-seq samples. Therefore, 

the objective of this step was to select the approach able to integrate the 

RNA-seq samples across the microarray samples (this is, fewer clusters 

of RNA-seq-only samples after the application of Ward’s clustering), 

able to return a more homogeneous distribution of the expression data 

within samples (this is, similar boxplots) and able to derive consistent 

biomarkers on both second feature selection routines using oxidative 

stress as the target stress. The approaches tested were: 

 

(1) Min-max normalization, batch correction and QN (Batch_min-

max_quantile.R) 

The most sensible approach is to apply min-max normalization and then 

correct the batch effects using the rescaled expression values. Then, QN 

would ensure a similar distribution of the expression values. After this 

pre-processing scheme was applied all RNA-seq samples were clustered 

together, making it unsuccessful (data not shown). This was assumed to 

be related to the application of a normalization step prior to the batch 

correction, which masked the differences between RNA-seq and micro-

array samples. However, the boxplots were similarly distributed across 

samples: they had a normal distribution with a median of 0.5, as corre-

sponds to the application of min-max and QN. The rest of the biomarker 

retrieval algorithm was executed for oxidative stress with this normaliza-

tion routine and the biomarker retrieved in 100% of the SVM-RFE itera-

tions was trxA, which was also retrieved in 4% of the executions of RF-

RFE. 

 

(2) Batch correction, min-max normalization and QN (Min-

max_batch_quantile.R) 

In order to improve the results of (1), the order of the batch correction 

and min-max normalization was inverted. As a result, there were only 

two clusters with only RNA-seq samples, one composed by two RNA-

seq oxidative stress samples and another by two RNA-seq control sam-

ples. Even though these clusters did not contain any microarray sample, 

they did not grouped control and stress samples together. The boxplots 

obtained were equal for all the samples but they are skewed towards low 

expression values. This result confirmed that the integration performance 

is better when the batch correction is carried out before the normaliza-

tion, although the homogeneity diminishes. This indicates that the order 

of application of the batch correction imposes a trade-off between the 

correction of the inter-sample variability and the homogenization of the 

intra-sample distribution of the expression data. When the rest of the 

biomarker retrieval algorithm was executed with this normalization 

routine, the biomarkers retrieved by RF-RFE and SVM-RFE did not 

match. SVM-RFE retrieved gltA in 100% of the iterations, whereas this 

gene was only returned in 0.5% of the executions of RF-RFE. This lack 

of consistency between feature selection algorithms was also observed in 

(1), which points out to the pre-processing masking the biological differ-

ences between genes’ expression. As a result, small differences in the 

features selection algorithms can lead to entirely different features se-

lected. 

 

(3) Batch correction and min-max normalization (Batch_min-max.R) 

A simpler version of the previous pre-processing schemes was applied to 

test if the lack of concordance between SVM-RFE and RF-RFE was due 

to an excessive modification of the expression data during the pre-
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processing. In this new trial the QN step was omitted. The hierarchical 

clustering returned two RNA-seq stress and one RNA-seq control sam-

ples clustered together. Furthermore, the boxplots showed that the data is 

skewed towards low values of expression and there were great differ-

ences in the distribution of the expression values between RNA-seq and 

microarray samples (data not shown). Even though the results of this pre-

processing scheme did not seem promising, the biomarkers retrieved by 

SVM-RFE and RF-RFE for oxidative stress were similar: manA was 

returned in 100% of the iterations of SVM-RFE and in 29.5% of the 

iterations of RF-RFE. As a result, this last pre-processing scheme, con-

sisting on batch-correction and min-max normalization, was selected due 

to the consistency of the biomarkers retrieved and its low computational 

cost. 

 

We can measure the goodness of the pre-processing ranking from one to 

three the pre-processing schemes according to the degree of normaliza-

tion and integration of samples, where one is the lowest score (Table 3). 

Taking into account the degree of concordance of RF-RFE and SVM-

RFE, it was shown that the score for the pre-processing is inversely 

proportional to the classifiers’ agreement. These results suggest a corre-

lation between the degree of pre-processing and the concordance of the 

biomarkers retrieved by the two feature selection procedures: methods 

that are able to thoroughly integrate and normalize RNA-seq and micro-

array samples did not provide consistent biomarkers, probably because 

the data had been extremely processed, increasing the number of arte-

facts and leading to a lack of robustness in subsequent processes. 

 

Table 3. Scoring of the pre-processing schemes according to the normal-

ity of their final boxplots, the integration of the RNA-seq samples and 

the concordance of the biomarkers retrieved by RF-RFE and SVM-RFE. 

Pre-processing 

procedure 

min-max + 

batch + QN 

batch + min-

max + QN 

batch + 

min-max 

Normality 3 2 1 

Integration 1 3 2 

TOTAL 4 5 3 

    

Concordance 2 1 3 

3.3. Feature selection algorithms 

After the execution of 10 iterations of RGIFE, all biomarkers retrieved 

were subjected to one more step of feature selection so as to obtain the 

gene whose expression is a better predictor of stress. RGIFE used a 10-

fold cross-validation scheme, where samples are divided into 10 sub-

samples, of which one is used as validation dataset and the remaining as 

training dataset for building a RF classifier. In this way, RGIFE can 

measure the accuracy of the classification using the validation subset so 

as to retrieve the minimum number of features able to train a maximum 

accuracy classifier. When the second feature selection algorithm is ap-

plied, the less discriminative features are removed one by one so that the 

accuracy of the classifier is always going to decrease. For this reason, a 

cross-validation scheme was not included in the second step of feature 

selection. 

Among the multiple options of feature selection algorithms, RFE was 

selected as it is an embedded method specifically designed for the analy-

sis of microarray experiments (Guyon, et al., 2002). RFE is typically 

coupled with SVM, whose performance has demonstrated to outperform 

other classifiers (Bolon-Canedo, et al., 2014; Guyon, et al., 2002). More-

over, RFE was executed with another classifier so as to be able to com-

pare results. RF was selected as this second classifier as it outperformed 

SVM in terms of overfitting and accuracy in metabolic data analysis for 

biomarker selection (Chen, et al., 2013). The RFE algorithm implement-

ed (Fig. 6) contained as ranking criterion gini impurity index for RF and 

the weight of each feature for selecting the support vectors in SVM.  

 

Load expression matrix (En), where n [RGIFE-retrieved features]  

run 200 times { 

       i = n 

      while length(i) ≠ 1 { 

                  Train a classifier with Ei 

 Rank(i) 

 Remove the least important feature (i = i - 1)} 

      Add i to the set of biomarkers} 

return (frequency of biomarkers) 

Fig. 6. Scheme followed by RF-RFE and SVM-RFE. 

3.4. Optimization of the classifiers 

The parameters T and C did not have recommended values in the re-

viewed literature even though they have a great impact in the result of 

their respective classifier; consequently, they were subjected to optimiza-

tion using a heuristic and an exhaustive method. T determines the num-

ber of bootstrap samples or trees that are taken into account for building 

the RF. For high values of T, RF classifications would converge to the 

same solution (Breiman, 2001), but their computational cost impedes 

their usage. On the other hand, parameter C reflects the trade-off be-

tween the maximization of the margin and the error in the classification 

of the training sample in SVM. It is recommended to use a low C for 

noisy data as it returns more robust results, or to increase it for retrieving 

more highly weighted biomarkers (Pedregosa, et al., 2011). 

3.4.1.Fitness function: GO score 

The fitness function to be optimized was the GO score, i.e., the extent to 

which the retrieved biomarkers are related to a stress process. This score 

is provided by the semantic similarity of the biomarkers’ GO terms to the 

stress term GO:0006950 and its child terms. A drawback of this fitness 

function is that it would prevent the optimized feature selection from 

returning uncharacterized genes. 

𝑆𝑐𝑜𝑟𝑒𝑅𝐹𝐸 =  ∑ 𝐺𝑂𝑠𝑐𝑜𝑟𝑒𝑖  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖

100𝑖   (2) 

Where RFE is either RF-RFE or SVM-RFE, i is each biomarker retrieved by 200 itera-

tions of RF-RFE or SVM-RFE, GO score is the score of the biomarker i and frequency is 

the percentage of the executions in which the biomarker i is the most discriminative.  

 

Firstly, the GO terms of the 4197 proteins in Bacillus subtilis subsp. 

subtilis str. 168 reference proteome (UniProt proteome ID 

UP000001570) were retrieved (locus_go.py). The resulting tab separated 

file was used as a library for mapping the locus of each feature returned 

after the 200 iterations of the RFE routines to its GO terms. Then, the 

function mgoSim (Yu, et al., 2010) was used to calculate the semantic 

similarity of each biomarker and the stress GOs. The percentage of times 

each biomarker was the most discriminative was used to weight its score 

and, finally, obtain the GO score (2). 

3.4.2.Simulated annealing 

The parameter T takes integer values and both RF and SVM make use of 

pseudorandom number generators. Therefore, the solution of the fitness 

function changes in each execution for the same value of the parameter.  

 

RFE 
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Fig. 7. Boxplot of the optimization of T in RF-RFE (A) and C in SVM-RFE (B) for oxidative stress. Y-axis contains the score obtained by the biomarkers in the three executions of 

the 200 iterations of the feature selection algorithm per value of the parameter, contained in x-axis.  

 

As a result, a stochastic combinatorial optimization was needed, for 

which simulated annealing was selected as it is the most adequate heuris-

tic for combinatorial optimization (Perry and Wagner, 2014). This heu-

ristic, executed through simanneal2 package (Table 2), was used to 

obtain the value of T and C able to retrieve the oxidative stress bi-

omarkers with a greater GO score (Fig. 8). The search space of C was 

discretized so that its search space is the same as T’s. 

 

P = [p1, p2, …, p46], where p is the value of the parameter; Tmax = 0.5; 

Tmin=10-5; steps = 30 

Initial conditions: new_state = random(P), T=Tmax 

from 1 to steps{ 

    current_state = new_state 

    classifier_RFE (200 iterations, parameter = current_state) 

    GO_score (classifier_RFE) 

    if not (GO_score < GO_score_accepted) AND 

( 
𝐺𝑂𝑠𝑐𝑜𝑟𝑒_𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑− 𝐺𝑂𝑠𝑐𝑜𝑟𝑒

𝑇
 > random([0,1])) 

            {accepted_state = current_state} 

    𝑇 = 𝑇𝑚𝑎𝑥 ∗ 𝑒
(

− ln(
𝑇𝑚𝑎𝑥
𝑇𝑚𝑖𝑛

)∗𝑠𝑡𝑒𝑝

𝑠𝑡𝑒𝑝𝑠
)
 

    new_state = accepted_state ±10} 

return saved_state for maximum GO_score 

Fig. 8. Scheme of simulated annealing optimization implemented using simanneal2 

package (Perry and Wagner, 2014). Classifier referes to either RF or SVM and parameter 

is T in RF and C in SVM. 

 

After 30 iterations of RF-RFE and SVM-RFE, simulated annealing 

was not able to converge to any good solution (data not shown). This 

failure occurred even with a higher maximum temperature and more 

iterations. A possible reason is that the heuristic failed to explore the 

search space of the parameters since it stayed in values close to the ran-

dom initial state, even when the space for neighbors’ selection was in-

cremented. Another issue was the stochasticity of the classifiers, which 

prevented GO scores from being consistent. Accordingly, the heuristic 

strategy was discarded due to the lack of consistency of the resulting 

optimum parameter in different executions. 

 

3.4.2.Exhaustive search 

The variability in the classifier made it possible to apply descriptive 

statistics to the GO scores obtained after three executions of the feature 

selection with the same parameter (Fig. 7). Because of T being a discrete 

parameter and the size of search space of C being equalized to T’s, the 

search space was limited to 46 values, which made it feasible to repeat 

the classifier several times per value. As a consequence, an exhaustive 

search optimization was applied to T and C (Fig. 9). The smaller value 

of the parameter able to compute a high GO score with a small variabil-

ity was used to execute again 1 repetition of the 200 iterations of the 

classifier-RFE and obtain the ranking of features. 

 

Initial conditions: P = [p1, p2, …, p46] 

for p in P { 

 repeat 3 times { 

  Classifier-RFE (200 iterations, parameter = p) 

  GO_score (classifier_RFE)} 

 boxplot showing the median and standard deviation} 

Fig. 9. Scheme for exhaustive optimisation, where P is the search space of either T or C 

and classifier is either RF or SVM. 

3.5. Application of the biomarker retrieval algorithm 

The biomarker retrieval algorithm was applied to oxidative and heat 

stresses. Since different oxidative stressors can cause different responses, 

subsequent analysis targeted the stress caused by each individual oxida-

tive agent to check the dependence of the oxidative response upon the 

oxidative agent employed. 
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3.5.1.Oxidative stress 

After the pre-processing, the 21 oxidative stress samples were tagged as 

STRESS and the remaining 154 samples as CONTROL. A Student’s t-

test was applied and the p-values associated to each gene’s expression 

were obtained. These p-values were used to execute jActiveModules for 

BacillusRegNet entries. 

Fig. 10. Differentially expressed regulatory modules in samples subjected to oxida-

tive stress as retrieved by jActiveNetworks. SigA has been removed for simplicity. 

 

Table 4. Oxidative stress biomarkers after 200 iterations of RF-RFE 

(T=48) and SVM-RFE (C=0.1). It shows the percentage of times each 

biomarker is returned as the most explanatory, the p-values after a two-

tailed Student’s t-test and the difference between the average expression 

values of control and stress samples. 

CDS Description RF-

RFE 

(%) 

SVM-

RFE 

(%) 

p-

value 

Control-

stress 

manA Mannose 6-P 

isomerase 

41.0 100 10-6 -0.257 

yxeB Iron binding 

protein 

23.5  10-4 -0.090 

gltA Glutamate 

synthase 

21.5  0.775 -0.017 

treP Trehalose  

transporter 

12.5  10-5 -0.238 

clpP  Protease 1.0  10-2 -0.136 

fbp Fructose 1,6-

bisphosphatase 

0.5  10-2 -0.131 

 

The differentially expressed subnetworks contained genes previously 

described as participants in the oxidative stress response (Fig. 10) 

(Helmann, 2016; Mols and Abee, 2011; Zuber, 2009). The main coordi-

nators of these subnetworks were the transcription factors Fur, LexA, 

CcpA and GlpP. Fur represses the expression of proteins involved in the 

uptake of iron in the presence of this metal (Zuber, 2009) and LexA 

represses the genes that responds to DNA damage (Mols and Abee, 

2011). CcpA and GlpP are regulators of the carbon metabolism in B. 

subtilis: CcpA is the main coordinator of the glucose-mediated catabolite 

repression (Wacker, et al., 2003), whereas GlpP is involved in the tran-

scription of the genes responsible for the uptake and degradation of 

glycerol (Lewin, et al., 2009). The last hub was SigX, an extracytoplas-

mic function sigma factor involved in cell envelope homeostasis whose 

mutant versions cause hypersensitivity to oxidative and heat stresses 

(Helmann, 2016). 

Fig. 11. First degree in and out interactions of the genes found by RGIFE (red and 

orange nodes) for oxidative stress as contained in BacillusRegNet data. The bi-

omarkers obtained as the most explanatory in more than 10% of the executions of RF-

RFE and SVM-RFE are represented as yellow nodes. 

 

The 10 repetitions of RGIFE returned a total of 45 genes needed to 

distinguish between oxidative stress and control samples with the maxi-

mum accuracy. Plotting the interactions of these genes using Bacil-

lusRegNet data, a pattern of alternate RGIFE biomarker and non-

biomarker was revealed (Fig. 11). Biomarkers are typically the target of 

the interaction, whereas non-biomarkers are the transcription factors that 

enable them to have a different expression profile in the stress condi-

tions. 

The values selected for T and C after the exhaustive optimization were 

48 and 0.1, respectively (Fig. 7). These values were applied to RF-RFE 

and SVM-RFE resulting in manA, yxeB, gltA and treP being the genes 

with the largest discriminative power, all of them significantly upregu-

lated except gltA (p > 0.05) (Table 4). Of them, yxeB, manA and treP are 

also contained in a differentially expressed module (Fig. 10). Looking at 

their interactions, gltA and treP participate in the same regulatory net-
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work but they are regulated by different transcription factors, yxeB is 

regulated by Fur and manA does not have any known interaction with 

transcription factors (Fig. 11).  

Regarding their functions, TreP is involved in the uptake of trehalose 

and it is repressed by CcpA and TreR, a repressor of the trehalose utiliza-

tion operon in absence of this disaccharide (Fig. 11) (Rezacova, et al., 

2007; Wacker, et al., 2003). GltA is part of the glutamate synthase com-

plex, the only enzyme able to synthesize glutamate in B. subtilis 

(Wacker, et al., 2003). yxeB encodes a ferrioxamine-binding protein that 

participates in the uptake of this iron-coordinated complex (Ollinger, et 

al., 2006). Lastly, manA encodes a mannose 6-phosphate isomerase 

essential for the catabolism of mannose (Sun and Altenbuchner, 2010). 

3.5.2. Diamide, H2O2 and paraquat biomarkers 

The high number of biomarkers needed to distinguish oxidative stress 

samples pointed out to distinct responses to different stressors. To check 

this hypothesis, the same analysis was executed for each oxidizing agent 

individually. RGIFE retrieved a total of 10 features for diamide-treated 

samples (12 samples), 4 for H2O2 (6 samples) and 2 for paraquat (3 sam-

ples). These preliminary results show that the number of biomarkers 

retrieved by RGIFE increases with the number of stress samples, which 

may be due to the inter-sample variability not being totally corrected 

during the normalization. 

Fig. 12. First degree in and out interactions of the genes found by RGIFE (orange and 

yellow nodes) for diamide (A), H2O2 (B) and paraquat (C) stresses as contained in Bacil-

lusRegNet dataset. Biomarkers obtained as the most explanatory in more than 10% of the 

executions of RF-RFE and SVM-RFE are represented as yellow nodes. 

 

After the application of RF-RFE and SVM-RFE with the optimum pa-

rameters, the genes whose expression is determinant of treatment with 

diamide were gltA, lytE and treP (Table 5, Fig. 12A). gltA and treP are 

common to the oxidative stress response but in the treatment with dia-

mide gltA is downregulated, whereas treP upregulation is kept (Table 5). 

lytE, downregulated during treatment with diamide (p<0.01), encodes an 

enzyme for the degradation of the peptidoglycan (Kasahara, et al., 2016). 

The biomarkers obtained for H2O2 were yxeB and uvrB (Table 5), 

both significantly upregulated (p<0.05). yxeB was also found as an over-

expressed biomarker in the oxidative stress response (Table 4). uvrB was 

retrieved by both RF-RFE and SVM-RFE and it encodes the DNA dam-

age recognition subunit of UvrABX complex.  

The samples treated with paraquat are only characterized by one bi-

omarker, icd (Table 5). icd, downregulated in stress samples (p<0.01), 

encodes the isocitrate dehydrogenase that catalyzes the oxidation of 

isocitrate to α-ketoglutarate coupled with the reduction of NADP+ to 

NADPH (Kim and Colman, 2005). 

 

Table 5. Diamide, H2O2 and paraquat stress biomarkers after 200 

iterations of RF-RFE and SVM-RFE. It displays the percentage of 

times each biomarker is returned as the most explanatory, the p-values 

after a two-tailed Student’s t-test and the difference between the average 

expression values of control and stress samples. 

Diamide (T=5, C=0.1) 

Symbol Description RF-

RFE 

(%) 

SVM-

RFE 

(%) 

p-

value 

Control-

stress 

gltA Glutamate syn-

thase  

49   10-27 0.0819 

lytE Peptidoglycan 

endopeptidase 

25.5  10-4 0.0421 

treP Trehalose trans-

porter subunit 

12.5 100 10-13 -0.1837 

clpP Proteolytic subu-

nit 

5  10-5 -0.0649 

dinB Protein DinB 3.5  10-4 0.0208 

lonA Lon protease 1 2.5  10-4 -0.0574 

yfkN Nucleotide phos-

phoesterase 

1  10-14 0.0724 

yrqA Cysteine protease 0.5  10-3 -0.0536 

cysK Cysteine syn-

thase 

0.5  10-3 -0.0298 

H2O2 (T=11, C=0.1) 

yxeB Iron(3+) binding 

protein 

50.5  0.0423 -0.382 

uvrB UvrABC system 

protein B 

33.5 100 0.0369 -0.393 

ftsH Metalloprotease 9  0.0454 -0.246 

katA Catalase 7   0.0135 -0.449 

Paraquat (T=50, C=0.1) 

icd Isocitrate dehy-

drogenase 

100 100 10-7 0.109 

3.5.3.Heat stress 

The same analysis was conducted for heat stress so as to double-check 

the stress-specific biomarker retrieval algorithm. A total of six microar-

ray samples cultured at either 48ºC or 51ºC were tagged as STRESS and 

RGIFE returned two features, the chaperone htpG and the benzoate 

dehydrogenase dhbA. Finally, the most predictive gene for heat stress 

was htpG, returned 100% of the times in 200 iterations of both RF-RFE 

(T=6) and SVM-RFE (C=0.3). 

3.6. Genetic C-element 

The abstract model of an inverted genetic C-element was implemented 

based on a majority gate (Fig. 14). The inputs of the circuit were the 

promoters repressed by BetI and LitR and the output was the CDS of the 

transcriptional repressor PsrA, which represses the expression of the 

target CDS (VioB in the example, Fig. 14).  



Fig. 13. Petri net model of the inverted C-element. The different places indicate the activation (+) or repression (-) of the expression of each CDS. The input signals (red), switch on or 

off the expression of the transcription factors used as internal signals (green), leading to the expression or inhibition of the target CDS (VioB). Transitions between places are displayed by 

arrows. A transition is active when a black dot is shown on it. A place triggered by two different transitions needs both active in order to progress towards it. When an active transition 

leads to two different states or when two places trigger a transition independently, the dot is enclosed in a circle. 

 

This design can be utilised as a black box to be coupled to any two in-

put signals that activates the expression of betI and litR. In the same way, 

the output of the circuit could be any CDS regulated by the promoter 

repressed by PsrA. This circuit was transformed into a Petri net (Fig. 13) 

and a digital simulation was carried out (Fig. 15). It could be observed 

that the expression of vioB is repressed when both BetI and LitR are 

present. Under this circumstances, the presence of BetI activates the 

expression of qacR, while, in turn, the presence of LitR activates the 

expression of srpR. QacR and SrpR are both needed to switch on icaR to 

activate vioB. On the other hand, the absence of both BetI and LitR is 

needed to sequentially inhibit qacR, activate icaR and inhibit srpR. Only 

after this sequence of events the absence of SrpR switches on the expres-

sion of vioB. It was confirmed that the state of vioB does not change 

when only one input is present (Fig. 15). 

Fig. 14. Logic-level design of an inverted genetic C-element circuit. The inputs of the 

circuit are the promoters repressed by BetI and LitR, whereas the output is PsrA, control-

ling the expression of vioB in the example. 

 

Once the mechanism of the inverted C-element was checked, it was 

utilized to cope with oxidative stress. The promoters of the two highest 

scoring oxidative stress biomarkers, manA and yxeB, were used as inputs 

of a C-element circuit that will result in the activation or repression of 

the expression vioB so as to ease the stress. vioB is a gene of 2997bp that 

encodes the enzyme VioB from Chromobacterium violaceum (Balibar 

and Walsh, 2006). VioB is not functional in B. subtilis, but it is able to 

subject cells to a high metabolic burden due to its large size (Smith, et 

al., unpublished). manA and yxeB are overexpresses under oxidative 

stress and, therefore, their promoters would induce the expression of betI 

and litR, respectively. However, for other stresses, if any of the bi-

omarker genes is downregulated, another NOT gate is needed upstream 

of betI or litR.  

 

Fig. 15. Digital simulation of the inverted C-element. The transitions of the two inputs 

(BetI and LitR) trigger the sequence of transitions of the internal signals IcaR, SrpR and 

QuaR that switches on or off the expression of vioB. 

 

This design was written in SBOL 2.0 using the sequences of the ele-

ments as DNAcomponent and defining the transcription repressions as 

PromoterRepression (Fig. 16). The promoter of manA was ob-

tained from the promoter of the operon manPA-yjdF. Its sequence spans 

from the previous CDS (manR) to the last non-transcribed nucleotide, 

42bp upstream of ATG (Sun and Altenbuchner, 2010). The RBS of 

manA was taken from its 5’ UTR. The promoter of yxeB was selected as 

the 94bp from 184bp to 90bp upstream of the initiation of the translation. 

This region contains the binding site of Fur and a multiple sequence 

alignment with Clustal Omega against several prokaryotic promoters 

predicted that it contains the RNAP binding site. The remaining 90bp 

upstream yxeB were considered as yxeB’s RBS. The weak and constitu-

tive promoter of the liaG gene was used for the implementation of the 

NOR gate. The fluorescent reporters rfp, cfp and gfp, whose emission 

and excitation wavelengths do not overlap, were fused to betI, litR and 

vioB to track the activation and repression of these transcriptional units.   

4 Discussion 

This work describes the implementation and usage of a stress specific 

biomarker retrieval algorithm. The folder of its source code contains a 

user guide with a description of its different options as well as a tutorial 

that ensures its reproducibility (README). The retrieved biomarkers 

were plugged to an inverted C-element. Although in this project the 

process is mainly applied to oxidative stress as a proof of concept, the 

objective will be to use this algorithm and the genetic circuit to address 

metabolic stress in synthetic strains. The overproduction of heterologous 

proteins lessens the amount of energy and biomolecules available for 

host’s housekeeping functions, limiting the growth rate, which leads to 

metabolic stress and the subsequent loss of productivity (Carneiro, et al., 

2013). Once the metabolic load samples are obtained from cultures ex-

pressing the burdensome protein VioB (Smith, et al., unpublished), the 

same process described here will be followed and the resulting genetic 

circuit with the corresponding biomarkers will be tested in vivo.  

A drawback of applying this approach to metabolic load is that the 

maintenance and expression of the elements of the circuit may cause as 

much metabolic load as vioB, so the expression of vioB would always be 

off. If this occurs the regulatory sequences of the biomarkers used as 

inputs of the circuit should be modify to raise the maximum intensity of 

the signal that keeps the system off, so the circuit will only respond to 

greater doses of stress. This task can be achieved by directed evolution 

of the input promoters. Nevertheless, the size of the circuit should not be 

a problem to the cells as the industrial overproducers can support large 

fragments of synthetic DNA, usually containing several copies of the 

heterologous CDS. Moreover, if the circuit is functional, the overproduc-

er strains bearing the C-element will have an adaptive advantage over the 

cells not able to turn down the production of the burdensome gene and 

they will be more prone to survival and fast growth.  
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TetR repressor and its orthologous are inhibited by tetracycline, a drug 

commonly used for the screening of mutants and expression induction in 

recombinant bacteria. This means that the designed circuit can be 

switched off adding this compound, so that strains based on tetracycline 

are not compatible with the current implementation of the C-element. 

Nevertheless, it is important to notice that tetracycline is the only com-

pound commonly used in genetic engineering that affects the functioning 

of the circuit and that the circuit does not need the addition of external, 

relatively costly substances such as IPTG or arabinose. During the digital 

simulation of the genetic circuit it was observed that the sequence of 

internal changes that leads to a change in the state of vioB differs be-

tween activation and inhibition as is characteristic of sequential logic, 

where different sequence of signals may trigger a different output (Fig. 

15) (Lou, et al., 2010). 

Focusing now on the pre-processing, the results suggest that the num-

ber of biomarkers increases with the heterogeneity of the samples set as 

STRESS. The more samples and treatments, the more biomarkers are 

retrieved, as corresponds to a more diverse cellular response to a broader 

range of threatens. This effect allows to uncover regulatory patterns that 

may not be seen when a smaller array of samples is screened. 

Fig. 16. Genetic design for an inverted C-element able to respond to oxidative stress 

using VisBOL (McLaughlin, et al., 2016). It modifies the expression of vioB (Output) as 

a function of the oxidative stress biomarkers manA and yxeB (Input 1 and 2). Arrows 

represent promoters, semicircles RBS, boxes operators, polygons CDSs and T termina-

tors. 

As far as the feature selection algorithms are concerned, SVM-RFE 

retrieved always the same biomarker in all the iterations, whereas RF-

RFE had more varied results (Table 4 and 5). This is due to a smaller 

stochasticity of SVM as compared to RF since pseudorandom numbers 

are only applied for shuffling the features before selecting them for fit-

ting the model.  This characteristic makes SVM-RFE’s GO scores larger, 

as there are not non-stress related biomarkers that diminish the score, but 

prevents this feature selection routine from showing the contribution of 

other features. This lack of variability added up to the overweighting of 

experimental artifacts that arises from SVM’s overfitted models (Bolon-

Canedo, et al., 2014), makes SVM prone to retrieve features that account 

for the noise and not for changes in the expression data. On the other 

hand, the stochasticity of RF that originates from the random selection of 

both the features per split and the bootstrap subset, makes it preferable 

due to its ability to escape from experimental artifacts. Actually, it has 

been described that RF-RFE overperforms SVM-RFE in finding small 

sets of discriminative features (Granitto, et al., 2006). In conclusion, RF-

RFE is preferred as a second feature selection algorithm due to its ability 

find alternative biomarkers, which allows it to prevent overfitting. 

Once the feature selection was applied, the GRN of the biomarkers 

showed that transcription factors were not identified as features able to 

distinguish stress samples from controls (Fig. 11 and 12). This result 

might be related to the differences in gene expression intensity having 

been set as distinction criterion. Transcription factors react to regulatory 

cascades with PTMs that modify their activity (Filtz, et al., 2014); hence, 

their expression intensity does not usually need to vary to respond to 

changes in the environment. They, in turn, modify the expression of the 

proteins that allow B. subtilis to adapt to the harsh conditions. 

These genes were treP, gltA, yxeB and manA in oxidative stress (Ta-

ble 4). The overexpression of treP, encoding a transporter of trehalose 

(Table 4), suggests that B. subtilis requires a higher rate of uptake of 

trehalose. This could be due to a greater demand of carbon for catabo-

lism and anabolism in order to deal with ROS disabling cellular struc-

tures and scavenging electrons from the oxidative metabolism, decreas-

ing its efficiency. Another possibility is a need to increment the pool of 

osmoprotectants in the cytosol as typically occurs during desiccation. 

The mechanism of overexpression of treP may be related to a possible 

inactivity of the catabolite repression towards trehalose regulated by 

CcpA (Fig. 11). This idea is compatible with the result of jActiveMod-

ules, which contained treP and other genes regulated by CcpA as part of 

one of the differentially expressed modules (Fig. 10), and it is supported 

by the fact that E. coli increases the metabolic flux through pathways 

alternative to glycolysis during oxidative stress (Rui, et al., 2010). An 

inactivation of TreP is discarded as the stress samples were not cultured 

in the presence of trehalose. 

On the other hand, gltA, encoding a subunit of the glutamate synthase, 

is downregulated. Its transcription is repressed by TnrA in the absence of 

glutamine and ammonium (Wacker, et al., 2003). Glutamate synthase is 

the main link between carbon and nitrogen metabolism since it catalyzes 

the conversion of α-ketoglutarate, an intermediate of Krebs’ cycle, and 

glutamine into glutamate (Wacker, et al., 2003). The expression of gltA 

is also induced by carbohydrates that increase the pool of α-ketoglutarate 

via GltC and GltR (Fig. 11) (Picossi, et al., 2007; Wacker, et al., 2003). 

Transcription regulators of the same family as GltC and GltR are in-

volved in zinc homeostasis and oxidative stress in Caulinobacter cres-

centus (Braz, et al., 2010). The upregulation of gltA may indicate that B. 

subtilis is depleting carbon from Krebs cycle towards the synthesis of 

glutamate. However, the overexpression of gltA is not statistically signif-

icant so this biomarker could be a false positive. 
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yxeB, encoding a ferrioxamine chelant, is significantly overexpressed 

in oxidative stress samples, which points out to an inactivation of its 

repressor, Fur (Fig. 10 and 11) (Ollinger, et al., 2006). This is consistent 

with ROS oxidizing Fe2+ and preventing it from activating Fur (Zuber, 

2009). In fact, both fur and yxeB are contained in a differentially ex-

pressed module (Fig. 10). 

Lastly, manA is the most discriminative biomarker of oxidative stress 

since it is retrieved in most of the iterations in both RF-RGIFE and 

SVM-RFE. It is significantly overexpressed (p < 0.05) in the stress sam-

ples and it was also found by jActiveModules (Table 4, Fig. 10). manA 

encodes the enzyme that transforms mannose 6-phosphate into fructose 

6-phosphate, an intermediate of the glycolysis also used as osmoprotect-

ants for retaining water during desiccation stress. The overexpression of 

manA may indicate a possible need of more energy or building blocks for 

adapting to oxidative stress, but also a need for more osmoprotectants, as 

it may be the case of treP. The increase of ManA and TreP, both in-

volved in boosting the pool of compatible solutes, may be explained by 

the control dataset not containing samples subjected to desiccation. The 

effectivity of the biomarker retrieval algorithm relies upon the range of 

conditions included in the set of samples so that false positive bi-

omarkers are more likely to be avoided if a broader range of stresses is 

included as CONTROL samples. Whether manA and treP are oxidative 

stress specific biomarkers needs to be confirmed including desiccation 

samples in the analysis. 

In contrast to the oxidative stress response, in the diamide analysis 

gltA is significantly downregulated (p < 0.01) (Table 5), indicating that 

cells are committing carbon to Krebs cycle in detriment of the synthesis 

of glutamate. Two possibilities arise regarding the destination of this 

extra carbon: its catabolism so as to obtain the energy and reductive 

power, or an increase in the pool of α-ketoglutarate. This last possibility 

has been previously described in E. coli and Pseudomonas fluorescens, 

where α-ketoglutarate is accumulated under oxidative stress conditions 

because of its consumption of H2O2 to form succinate in a non-enzymatic 

oxidative decarboxylation (Mailloux, et al., 2009; Rui, et al., 2010).  

The second most discriminative biomarker for diamide stress was lytE 

(Table 5), which encodes the enzyme responsible for the degradation of 

the peptidoglycan of the cell wall during cell elongation (Kasahara, et al., 

2016). It has been observed that certain bactericidal proteins, such as 

PGRPs (mammalian Peptidoglycan Recognition Protein), are able to 

bind disaccharide-pentapeptides in Gram+ bacteria so as to induce oxida-

tive, thiol and metal stress responses (Kashyap, et al., 2014). The down-

regulation of lytE during oxidative and thiol stresses induced by diamide 

could be due to an endogenous cellular response triggered by the pres-

ence of oxidative and thiol damage. B. subtilis would interpret these 

damages as a possible attack targeting products of the degradation of 

peptidoglycan and it would decrease their presence downregulating lytE. 

It is interesting to point out that the features lonA and clpP, overex-

pressed during diamide stress and retrieved with a low explanatory pow-

er (Table 5), are regulated by the transcriptional repressor CtsR (Fig. 

12A), a central stress regulator that is targeted for degradation by McsB 

upon oxidative and heat stresses (Stannek, et al., 2015). ClpP is part of a 

protease complex that degrades misfolded proteins, while LonA is a 

conserved protease that targets proteins damaged by oxidation in the 

mitochondrial matrix of eukaryotes (Pinti, et al., 2015; Stannek, et al., 

2015). As expected by a similar transcriptional regulation, they increase 

their production in the same order of magnitude (0.065 units for clpP and 

0.057 for lonA) (Table 5). 

All data provided suggests that the specific diamide response involves 

the expression of proteases that degrade misfolded proteins, the stabiliza-

tion of the peptidoglycan in the cell wall and the redirection of the car-

bon metabolism towards the synthesis of the antioxidant α-ketoglutarate. 

This response is radically different to the one of H2O2 and paraquat. 

During H2O2 stress, the biomarkers uvrB and yxeB are overexpressed 

(Table 5). UvrABX is in charge of the NER (Nucleotide Excision Re-

pair), which detects and replaces nucleotides in bulky DNA lesions 

(Waters, et al., 2006). Oxidative stress and specially H2O2 is known to 

cause DNA damage (Imlay, 2015; Zuber, 2009), which is recognized and 

targeted to repair by UvrB. On the other hand, icd is downregulated in 

the samples treated with paraquat, a mechanism previously observed in 

E. coli, where this herbicide induces the production of acetate. In this 

organism, acetate inactivates Icd and turns down the production of 

NADPH in favor of NADPH, diminish the amount of ROS produced in 

the electron transport chain (Rui, et al., 2010). 

All in all, the biomarkers of oxidative stress depend on the stressors 

used to induce it. When all the stress samples are taken into considera-

tion, manA, yxeB, gltA and treP are retrieved (Table 4). From them, gltA 

and treP are also found in diamide-treated samples, and yxeB is one of 

the H2O2 biomarkers (Table 5). Nevertheless, lytE, uvrB and icd, also 

found in diamide, H2O2 and paraquat stress responses, are not found as 

biomarkers of the general oxidative stress response and manA is not 

present in any stressor-specific analysis (Table 4 and 5). manA could be 

a false positive retrieved due to tagging samples subjected to various 

treatments as STRESS, increasing the variability of the expression data 

and making the processing more prone to be affected by artefacts. 

The central regulators of the oxidative stress response LexA, Fur and 

PerR are present in the GRN of the retrieved biomarkers (Fig. 11 and 

12). However, the only gene retrieved from the set of detoxifying en-

zymes previously identified as indicative of oxidative stress was the 

vegetative catalase katA for H2O2 (Fig. 5) (Imlay, 2015), which indicates 

either a bad performance of the biomarker retrieval algorithm or a lack of 

need of those detoxifying enzymes in the response to some oxidative 

stressors, probably in diamide’s. Interestingly, diamide’s deleterious 

mechanism does not involve the generation of ROS, the targets of cata-

lase, superoxide dismutase and peroxidase (Kashyap, et al., 2014). 

The application of the retrieval algorithm to heat stress retrieved htpG 

exclusively. htpG is the only member of the type IV heat-shock regulon 

in B. subtilis and encodes the chaperone HtpG (Schumann, 2003). The 

mechanism of induction of this regulon is still no clear but it is consid-

ered to be triggered by a membrane or extracellular sensor (Schumann, 

2003). Chaperones have been found to participate in the specific adap-

tive response to heat stress so as to prevent protein misfolding and ag-

gregation (de Nadal, et al., 2011). Moreover, it has been observed that 

HtpG associates to the ribosomal protein L2 during heat stress in E. coli 

(Motojima-Miyazaki, et al., 2010). 

4.1. Limitations 

Although generally the biomarkers found are consistent with the stress 

under analysis, it was not clear the extent to which the RNA-seq samples 

contributed to the result; consequently, the biomarker retrieval algorithm 

was tested executing it for oxidative stress using only microarray sam-

ples. In this analysis SVM-RFE returned manA in 100% of the iterations 

and RF-RFE returned manA (75%), treP (11.5%) and gltA (10.5%), 

similarly to the biomarkers obtained when RNA-seq samples were also 

included in the analysis (Table 4). This result indicates that the RNA-seq 

samples are being neglected, possibly due to their reduced number in 

comparison with microarray samples, preventing them from having a 

real impact in the result of the algorithm. 

On the other hand, the raw number of reads per CDS in the RNA-seq 

samples does not provide a measurement able to compare the expression 

of different CDSs since the ones that are longer have a greater number of 
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reads for the same level of expression. A scaling that would provide a 

better metric of the expression intensity would be RPKM (reads per kilo-

base per million of mapped reads). The RPKM scaling (3) was applied to 

the RNA-seq entries adding this step to the integration process 

(Scale_Normalise_batch_RPKM.R). After applying the rest of the bi-

omarker retrieval algorithm targeting oxidative stress SVM-RFE (C=0.1) 

retrieved manA in 100% of the executions and RF-RFE (T=25) returned 

ylaC 32.5%, fbp 24.5%, comZ 22.5% and lonA 19.5%. These results are 

different from the ones obtained when the RPKM approach was not 

applied (Table 4), which indicates that RNA-seq samples influence the 

results only when the RPKM scaling is applied. Future work will check 

the biomarkers obtained for other stresses applying this new scaling step. 

𝑅𝑃𝐾𝑀 =
𝑟𝑎𝑤 𝑟𝑒𝑎𝑑𝑠

𝐶𝐷𝑆 𝑙𝑒𝑛𝑔𝑡ℎ
∗

106

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠
    (3) 

Another improvement will consider genes as part of operons instead 

of individual transcriptional units. In prokaryotes, CDSs that encode 

proteins participating in the same pathway are often organized in operons 

regulated by the same promoter so that they should have an equivalent 

level of expression. Consequently, the execution of this tool targeting the 

overall expression of operons instead of single CDSs would prevent false 

positives. 

4.2. Future work 

The different software used for the biomarker retrieval algorithm heavily 

depends on several parameters that are kept as default. In the current 

work the only ones tuned belong to the second feature selection step but 

it would be interesting to tune some of the parameters used by RGIFE or 

the pre-processing. The optimisation of more than one parameter re-

quires the use a heuristic optimization scheme and, as shown in this 

report, this task is not straightforward when the differences in the fitness 

function are masked by the stochasticity of the algorithm. However, 

when more than one parameter is changed the evaluation of the fitness 

function may have a larger variation for different parameters and new 

optimum solutions may be found. The main issue when implementing 

this optimization for parameters used in early stages of the biomarker 

retrieval algorithm is the slow speed of the 10 executions of RGIFE, that 

would need to be distributed among different cores to make the optimi-

zation feasible. 

The fitness function should also be modified since the GO terms may 

not be correctly assigned for poorly characterised genes. A new fitness 

function would take into account the topography of the GRN as a meas-

urement of the proximity of the biomarker to predefined stress nodes 

such as lexA, fur, perR, ohrR and cymR for oxidative stress. Furthermore, 

the GRN can be enriched converting it into a PFIN (Probability Func-

tional Integrative Network). PFINs weight the interaction between two 

genes according to the evidence gathered from several genetic, biochem-

ical and computational experiments, providing a probabilistic measure of 

the likelihood of an interaction (Lee, et al., 2004). Although contrast of 

hypothesis and machine learning are striking different methodologies, as 

shown when comparing the results of Student’s t-test and the ranking of 

biomarkers (Table 4 and 5), another improvement of the fitness function 

would include the p-values derived from a contrast of hypothesis as a 

measurement of the likelihood of a biomarker being a true positive. 

As far as the genetic circuit is concerned, a continuous simulation is 

needed to check if the dynamic ranges of response of the TetR repressors 

are compatible with the functionality of the circuit. Different repressors 

trigger different levels of expression when they are on or off and it may 

occur that the off state of a repressor is enough to inhibit the expression 

of the next element in the circuit. The dynamic ranges of the TetR re-

pressors had been maximised modifying the RBSs that control their 

expression, so that the difference of expression between on and off states 

is maximum (Stanton, et al., 2014). The same RBSs have been used in 

this work, and the response function of each repressor together with the 

expression profile of the biomarkers with and without stress should be 

used to find the best distribution of repressors among logic gates. Once 

the genetic circuit has been tried in silico, it has to be tested in vivo. For 

that purpose, it will be split in fragments that will be included in different 

commercial integrative plasmids to be synthesized using overlapping 

oligonucleotides. 

4.3. Conclusions 

This work describes a simple and versatile stress-specific biomarker 

retrieval algorithm. This pipeline can be applied to several biological 

quantitative measures in different organisms and non-stress scenarios 

such as differences in communities of bacteria using metagenomic ex-

periments or biomarkers determinant of clinical conditions harnessing 

quantitative proteomics. Furthermore, to my knowledge, this work is 

pioneer in coupling machine learning to the design of a synthetic circuit 

able to dynamically adjust a cellular response. 
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