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Abstract

Motivation: Stress processes are the cause of loss of performance of industrial cultures of bacteria.
Synthetic biology provides the tools to address this problem but the discovery of stress-specific bi-
omarkers to identify and address the onset of a particular stress remains unsolved.

Results: This work describes a new algorithm for the retrieval of stress-specific biomarkers that ap-
plies two sequential feature selection algorithms to high-throughput gene expression data in Bacillus
subtilis. Then, an inverse C-element circuit is designed using a black box approach. As an in silico
proof of concept of this design, the regulatory sequences of the top two oxidative stress biomarkers

are set as inputs of this circuit with the objective of easing the stress.

Contact: d.casas-pastor2@newcastle.ac.uk

1 Introduction

Synthetic biology consists of the application of engineering approaches
to life science aiming at the design of novel biological systems. For
doing so, it requires from the integration of several disciplines that, alto-
gether, enable the coupling of biological parts, devices and circuits so as
to make a target chassis able to fulfil a predefined specification. Synthet-
ic biology has been applied to the design of cell factories to produce
high-value compounds (Mahalik, et al., 2014). Currently, the main or-
ganism used for the production of heterologous proteins in industrial
processes is Escherichia coli (Demain and Vaishnav, 2009). However,
Bacillus subtilis is widely used for homologous expression of enzymes
and it provides several advantages over Escherichia coli in the heterolo-
gous production, such as the lack of endotoxins and a high secretion
yield (Demain and Vaishnav, 2009).

At present, there are several repositories that host functional infor-
mation about biological parts of E. coli and B. subtilis (Misirli, et al.,
2014), but there is still a need for more parts to expand the functionality
of synthetic circuits. Moreover, the great complexity of the molecular
interactions within the cells used as chassis and the lack of a host with
minimum genome prevents the use of context-independent parts (Choe,
et al., 2016). Therefore, the increase of the pool of available genetic parts
for B. subtilis goes through the specific characterisation of its endoge-
nous regulatory mechanism.

One of the areas were the application of synthetic biology would be
advantageous is in the track and control of cellular stress. High-yield
engineered bacteria often suffer from stress processes that activate feed-
back responses that diminish both cellular growth and recombinant pro-
tein production (Mahalik, et al., 2014). Some attempts have been made
to overcome this stress response in B. subtilis (Carneiro, et al., 2013;

Ceroni, et al., 2015); nevertheless, none of them managed to dynamically
respond to specific changes in the host’s metabolism.

The stress response is a natural mechanism of adaptation to changes in
the environment that decrease the fitness of the organism (Sulmon, et al.,
2015). The presence of an external stressor is a threaten to the survival of
the cell as it causes metabolic imbalances that, eventually, can lead to
death (Sulmon, et al., 2015). Nevertheless, cells are able to fight back
activating intracellular signalling pathways so as to adapt to the new
suboptimal growth conditions (de Nadal, et al., 2011).

The stress response can be divided into two categories: a generic re-
sponse that provides cross-protection against several stressors and a
specific adaptive response, in which cells specifically respond to one
stressor (de Nadal, et al., 2011; Price, et al., 2001; Sulmon, et al., 2015).
The generic response genes are typically involved in primary metabo-
lism, transport and detoxification, protein homeostasis, intracellular
signalling and DNA repair (de Nadal, et al., 2011). Although the same
stress affects similar processes across the tree of life (Sulmon, et al.,
2015), the stress adaptive response greatly depends of the organism, its
life-cycle stage (de Nadal, et al., 2011) and the specific stressor.

After the stressor has been sensed and the signal has been transduced,
the most immediate cellular responses are post-translational modifica-
tions (PTM), which provide a rapid defence against stress, whereas gene
expression regulation provides long-term adaption to stress (de Nadal, et
al., 2011). As a result, gene expression changes are a major mechanism
in cells adaptive response to stress (de Nadal, et al., 2011).

1.1. Bacillus subtilis’ stress response
B. subtilis responds to harsh conditions using a battery of mechanisms
that include cell specialisation (genetic competence and sporulation), as
well as stress-specific responses to protect, repair and detoxify the cell
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(Zuber, 2009). Generally, ¢® is the sigma factor that recognises the pro-
moters of genes related to stress protection (Hecker and Volker, 1998;
Schumann, 2003; Zuber, 2009).

Among the adaptive stress response, oxidative and heat-shock re-
sponses are commonly activated in overproduction strains and they are
one of the main agents responsible for their loss of productivity
(Hoffmann and Rinas, 2004). Therefore, it would be desirable to wire
these responses to the production of the overexpressed gene so as to
switch off its transcription when the stress response is active.

1.1.1.Oxidative stress response in B. subtilis

Oxidative stress is the biological condition caused by the exposure of a
cell to oxidising agents that are able to take electrons from biomolecules
such as DNA and redox enzymes, damaging their structure, disrupting
their functionality and leading to mutagenesis and cellular death (Zuber,
2009). Among these agents, Reactive Oxygen Species (ROS) such as Oy
and H,O, are normally generated as by-products of aerobic metabolism
(Imlay, 2015), especially in strains with great energy expenses, such as
industrial strains. B. subtilis contains enzymes to degrade ROS (superox-
ide dismutases, peroxidases and catalases) (Imlay, 2015). Nevertheless,
oxidising agents can also have an external source, for example, the herb-
icide paraquat is able to trigger the production of O, and H,0,, while
diamide is able to directly oxidise thiol groups of proteins (Kashyap, et
al., 2014).

ROS can disrupt cellular structures and metabolism through different
targets, such as exposed [4Fe-4S]* clusters and thiols from cysteine
residues in proteins (Zuber, 2009). [4Fe-4S]" clusters are typically found
in the active centres of redox enzymes, where ROS are able to under-
coordinate Fe?*. Fe*" is subsequently oxidised to Fe** as a consequence
of the intracellular redox imbalance, which in turn leads to the produc-
tion of hydroxyl radicals that have the potential to damage most biomol-
ecules and to cause mutations (Herbig and Helmann, 2001; Imlay, 2015;
Zuber, 2009). Furthermore, ROS are able to disrupt the oxidative metab-
olism of the cell due to their electron-scavenging activity (Imlay, 2015).

In B. subtilis the treatment with paraquat and H,O, triggers the ex-
pression of the operons repressed by PerR, Fur, Spx, OhrR and CymR,
among others (Helmann, et al., 2003; Tam, et al., 2006; Tanous, et al.,
2008; Zuber, 2009). Fe*" is normally sensed by Fur and PerR, two re-
pressors of the expression of the iron uptake proteins (Zuber, 2009). Fur
and PerR are not able to recognise Fe**, the main valence of iron after
exposure to ROS, leading to an increase in the uptake of iron during
oxidative stress, which promotes the disruption of more cellular struc-
tures (Lee and Helmann, 2006; Varghese, et al., 2007; Zuber, 2009).

1.1.2. Heat stress response in B. subtilis

The exposure to high temperature increases the likelihood of proteins to
reach non-native conformations, not usually functional and with tenden-
cy to aggregation (Schumann, 2003). B. subtilis copes with the heat
stress regime upregulating the expression of chaperones and proteases;
chaperons prevent the denaturalisation of proteins, while proteases de-
grade proteins in their non-native conformation (Schumann, 2003).

B. subtilis” heat response cascade is induced above 48°C and it is
started by direct sensors, i.e. RNA and proteins that have a temperature-
dependent conformation; and indirect sensors, i.e. chaperones that modu-
late the activity of transcription factors and are titrated by denatured
proteins (Schumann, 2003).

1.2. Supervised machine learning for feature selection
The gene expression intensity under different conditions can be used to
explore which genes (hereafter also called features) respond specifically
to a particular stress and can be considered stress-specific biomarkers.
The regulatory sequences of these genes could be used as inputs to re-
wire the stress response so as to improve cellular fitness.

Bacillus subtilis subsp. subtilis str. 168 has a total of 4,421 CDSs
(Coding DNA Sequence) (NC_000964.3 NCBI) and most of them would
either not be related to stress or be part of the generic stress response.
Moreover, the increased complexity, the cross-talk between parts and the
detrimental effects of stochastic processes in the wiring would diminish
the efficiency of a circuit with more than 2 inputs. Consequently, a fea-
ture selection procedure is needed to decide which features are able to
explain most of the changes between stress and control conditions.

Feature selection algorithms fall into four categories: filters, wrappers,
embedded and hybrid methods, which combine different strategies
(Bolon-Canedo, et al., 2014). Embedded methods are a trade-off between
wrappers and filters: they have a closer interaction with the classifier
than filters, while keeping a smaller computational cost than wrappers
(Bolon-Canedo, et al., 2014). Recursive Feature Elimination (RFE) is an
embedded method extensively applied to gene expression analysis due to
its performance (Bolon-Canedo, et al., 2014). It consists of iteratively
training a classifier and removing the feature with the lowest score on
each iteration (Bolon-Canedo, et al., 2014).

Feature selection algorithms depend on classifiers to rank features ac-
cording to their importance to distinguish groups of samples. The most
popular classifier applied to RFE is Support Vector Machine (SVM), but
other common classifiers such as Random Forest (RF) could also be
utilised (Granitto, et al., 2006).

Random Forest is an ensemble classifier in which several decision
trees are built from a training dataset, forming a forest. It is frequently
used due to its simple theory, high speed, stability, robustness and small
model overfitting (Chen, et al., 2013). It is a bagging method as each tree
is built from a bootstrap sample drawn from the training set with re-
placement (Breiman, 2001). Inside each decision tree, each split is
picked from a random subset of features using the gini impurity index to
decide which feature is able to divide the bootstrap sample into purer
subsets (Breiman, 2001; Pedregosa, et al., 2011). Once it is built, RF is
used to classify a test set according to the mode of the prediction for each
tree in the forest (Pedregosa, et al., 2011).

SVMs are commonly used for the analysis of high-throughput biolog-
ical experiments as they possess a good classification accuracy keeping
the computational cost low, although they tend to overfit models (Bolon-
Canedo, et al., 2014; Fang, et al., 2012; Guyon, et al., 2002). SVMs
project each sample in an n-dimensional space as an n-dimensional vec-
tor, where n is the number of features. Then, they draw the hyperplanes
able to separate samples belonging to different groups. The selected
hyperplane is the one with the maximum margin, this is, the greatest
distance between the nearest training samples belonging to different
groups, or support vectors. Consequently, the features that determine to
the position of support vectors are the ones that contribute more to the
classification (Granitto, et al., 2006; Guyon, et al., 2002; Pedregosa, et
al., 2011; Scholkopf and Smola, 2001). SVMs use different kernels to
compute the margins but linear kernels provide the best results in terms
of speed and accuracy in tasks with a small ratio groups/features
(Granitto, et al., 2006; Scholkopf and Smola, 2001). The problem arises
when the training samples belonging to different groups are not linearly
separable and some of them are misclassified. The soft-margin approach
is used in this case, which employs the parameter C, or penalty of the
error term, to decide which is the best trade-off between margin maximi-
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zation and misclassification minimization (Scholkopf and Smola, 2001).
Low values of C retrieve a greater margin, whereas high values tend to
classify all training samples correctly (Scholkopf and Smola, 2001).

The heuristic RGIFE (Ranked Guided Iterative Feature Elimination)
was used as a first approach for finding the minimum subset of features
able to classify control and stress samples with the maximum accuracy.
RGIFE is a feature selection algorithm that iteratively removes groups of
features until the performance of a RF classifier does not improve (Swan,
et al., 2015). It usually returns more than two features; hence, another
feature selector needs to be sequentially applied to reduce the number of
features in detriment of the classifier’s performance. Here, two feature
selection strategies will be tested, RF-RFE and SVM-RFE.

1.3. Parameter optimisation

Computational operations have a great dependence on parameters of
unknown value. However, these parameters can be determined optimis-
ing the result of a fitness or objective function given a set of constrains.
Analytic procedures are the methods of election when the exact optimal
value of the parameter needs to be found and the fitness function is sim-
ple enough. Nonetheless, for more complex functions, each value of the
parameter has to be evaluated using an exhaustive optimisation. Exhaus-
tive methods are not always possible since the computational expense
increases exponentially for multiparametric optimizations or when the
fitness function is stochastic. In these cases, heuristic optimisation meth-
ods, which retrieve an approximation of the optimal value, are utilised.

Simulated annealing is a stochastic global optimisation heuristic that
iterates over a range of values evaluating the fitness function. It accepts
three constants: a maximum and a minimum temperature, the rate of
decrease of the temperature per iteration and the search space of each
parameter to be optimized. A new value of the target parameters, or
state, will be accepted if the output of the fitness function is improved
with respect to the previous accepted state, or reference state. Otherwise
the new state could be still accepted with a probability proportional to
the temperature and inversely proportional to the difference between the
new and the reference value of the fitness function. The new state to be
evaluated is selected among the neighbours of the reference state. In this
way, the search is facilitated by high temperatures at the beginning to
scape local optima, whereas at the end the temperature is lower and the
heuristic turns to be greedier so as to converge to the global maximum
(de Amorim, 2009). The search stops when the solution is considered
good enough or after a pre-fixed number of steps.

RF and SVM largely depend on two parameters, the number of trees
in the forest (T) and the penalty of the error term in the soft-tail approach
of SVM (C). Different optimization strategies of these parameters will be
tested before the most discriminative features are retrieved. Then, these
features will be used for the design of a genetic circuit.

1.4. Genetic logic synthesis

Genetic circuits are gene regulatory networks (GRN) that modulate an
output response according to a set of input signals. They are composed
by a set of genes and the set of their interactions arranged in gates to
perform a defined logic function, similarly as electric circuits. Genetic
logic can be implemented at different levels but transcriptional level, in
which the interactions between genes involve the induction or repression
of the binding of RNA polymerase (RNAP) to a promoter, is the one that
currently offers more advantages (Vaidyanathan, et al., 2015). The com-
plexity of genetic logic circuits grows with the number of elements it
contains (Chaouiya, et al., 2004), impeding the implementation of com-
plex behaviours such as sequential logic.

Sequential logic circuits are characterised by their ability to set an in-
ternal state so that their output depends on both inputs signals and this
internal memory (Lou, et al., 2010), similarly to a finite-state automaton.
This behaviour allows sequential circuits to perform more sophisticated
functions than combinatorial circuits, whose output only depends on the
inputs received.

Muller C-element is a sequential logic function resistant to transient
fluctuations in the input signals. In a genetic context, it is able to set the
expression of an output CDS to ON, or 1, when both inputs are active
and to OFF, or 0, when there is no input. The robustness of this system
comes from its memory, which enables it to keep the previous set state
when only one input signal is present (Table 1). Several versions of a
genetic C-element have been designed and simulated (Nguyen, et al.,
2010) but a black box implementation that could be coupled to any input
is still pending. The design and digital simulation of this circuit using
Petri nets would help in its logic synthesis.

Table 1. Truth table for a Muller C-element

Input A InputB Output
0 0 0

0 1 Hold

1 0 Hold

1 1 1

Manual design is currently the most effective technique for sequential
circuits (Nielsen, et al., 2016). This is an error-prone process, especially
for complex circuits. In this context, the application of Petri nets suppos-
es a benefit in both the design and the testing steps of the genetic logic
synthesis. Petri nets are place-transition automata composed by a set of
places or states and a set of directed transitions between places. Each
place can accept a fixed number of tokens that are able to trigger or
impede the transition to another place (Chaouiya, et al., 2004). Petri nets
provide an scalable and standardized platform for representing GRN,
where genes are places, transitions are transcriptional interactions and
tokens are transcription factors (Bonzanni, et al., 2014). Furthermore,
they provide a flexible platform that can be used to model and simulate
Boolean, continuous, hybrid and stochastic systems (Heiner and Gilbert,
2013). Currently, the main application of Petri nets in biology is the
analysis of biological pathways (Bonzanni, et al., 2014; Chaouiya, et al.,
2004), but their utilisation in the design, analysis and simulation of syn-
thetic circuits is at a preliminary stage, with some examples such as a
model of a repressilator (Heiner and Gilbert, 2013).

1.5. General aim

Recently, stress processes in industrial strains have gained attention of
the scientific community as a way to improve productivity. In vivo moni-
tors of metabolic stress have been implemented for B. subtilis (Smith, et
al., unpublished) and E. coli (Ceroni, et al., 2015); however, they are
only fluorescence-based sensors not able to wire cellular responses to-
wards the relief of the stress. Consequently, the aim of this work is to
create a reproducible algorithm to derive gene markers whose expression
can be used to monitor a specific stress. Then, a genetic inverse C-
element will be designed as a black box using an orthogonal system of
transcriptional repressors so as to connect it to any transcriptional pro-
cess. As a proof of concept of the pipeline, the oxidative stress bi-
omarkers of B. subtilis will be retrieved and set as the input of the circuit
50 as to control the output of a burdensome protein.
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2 Methods

2.1. Data sources

Six exponential cultures of B. subtilis subsp. subtilis str. BSB1 (similar to
Bacillus subtilis subsp. subtilis str. 168 for the purpose of this study)
grown at 37°C, of which 3 samples had been exposed to 0.1mM H,0,
10min, had been subjected to mMRNA sequencing using lonTorrent plat-
form and its recommended protocol. The subsequent reads had been
quality assessed and trimmed using FastQC (Andrews, 2010) with cut-
offs between 19 and 249. Then, they had been aligned against B. subtilis’
reference genome (AL009126.3) using Bowtie2 2.2.2 (Langmead, et al.,
2009). The number of reads per CDS had been quantified using HTseq-
count routine (Anders, et al., 2015) and they were the starting point of
this analysis.

The 169 NimbleGen tiling microarray samples had been hybridized
with cultures subjected to different experimental conditions, including
anaerobic growth, glucose depletion and starvation, high and low phos-
phate concentration, high (3 samples at 48°C and 3 samples at 51°C) and
low temperature, high NaCl osmolarity, presence of ethanol or mitomy-
cin C and 18 samples subjected to oxidative stress induced by 0.5mM
diamide 15min (6 samples), 0.6mM diamide 10min (3 samples), 0.4AmM
paraquat (3 samples) or 0.1mM H,0, (3 samples) (Nicolas, et al., 2009).

BacillusRegNet dataset is a GRN that contains a total of 1264 regula-
tory interactions between 861 genes in B. subtilis 168 (Fig. 1). Interac-
tions between genes that do not encode proteins are not included (Misirli,
etal., 2014).

Fig. 1. Global layout of BacillusRegNet data displayed in Cytoscape.

2.2. Operating system, programming languages and
software
Ubuntu 14.04.1 was executed in Windows 8 using the virtual machine
VMware Workstation 12 with 1GB of RAM, 1 processor and 100GB of
hard disk space. The programming languages used were R 3.3.0 written
through the IDE (Integrated Development Environment) RStudio
0.98.1062, Python 2.7 through the IDE Spyder 2.3.9, and Java 8.0 in
Eclipse Neon 4.6.0. Anaconda (Analytics, 2015) was used for installing
new packages and as the platform for running Python 2.7. Cytoscape
3.3.0 was utilized to create the plots of the GRN and to execute jAc-
tiveModules, which enables the obtainment of subnetworks containing
differentially expressed genes (Ideker, et al., 2002). Workcraft 3.1.0 was

used for the design and modelling of the C-element circuit and its Petri
net (Poliakov, et al., 2009).

Table 2. Packages used in this work

Package Lan- Usage Reference
guage
numpy 1.10.4 Python ~ Numerical computa- (van der Walt,
tion etal., 2011)
scipy 0.17.1 Python ~ System specific pa- (van der Walt,
rameters and functions et al., 2011)
random Python  Pseudorandom num-  Standard library
bers
sys Python  Access to system Standard library
Classifi- Python  RFand SVM This work
ers_module
0s Python  Operating system  Standard library
interface
rpy2 2.7.8 Python  Run R in python (Belopolsky, et
al., 2014)
matplotlib 1.5.1  Python  Boxplots (Hunter, 2007)
csv 1.0 Python  Read-write CSV files Standard library
collections Python  Container of datatypes ~ Standard library
sklearn 0.17.1 Python ~ Machine learning (Pedregosa, et
al., 2011)
simanneal2 Python  Simulated annealing (Perry and
Wagner, 2014)
re Python  Regular expressions Standard library
GOSemSim R Score GO terms (Yu, et al,
1.30.2 2010)
preprocessCore R Quantile normalization  (Bolstad, 2016)
1.34
sva 3.20.0 R ComBat for batch (Leek, et al.,
effects correction 2016)

2.3. Biomarker retrieval algorithm

2.3.1. Integration of gene expression datasets
The entries corresponding to the 855 CDSs common to all datasets
(RNA-seq, microarray and BacillusRegNet) were kept for the analysis.
Firstly, the gene symbols, or human-friendly gene identifiers in NCBI
database, were converted into locus tags, the identifier of the loci, using
the database MicroScope for the reference genome of Bacillus subtilis
subsp. subtilis str. 168 as conversion key (www.genoscope.cns.fr). It was
taken into consideration that symbol tags were contained in two different
columns of the MicroScope’s tab separated file and that some entries
contained more than one gene symbol per tab slot. When the search was
not successful, the locus tag was sought in BacillusRegNet table since it
contains both locus tags and gene symbols. The gene symbols ymfK,
dnaE and rsfA were manually assigned to their locus tag. As a result,
entries with paralogous CDSs that use the same symbol tag were as-
signed to more than one locus tag. Finally, the entries of RNA-seq and
microarray datasets were merged using locus tags as identifiers (Till-
ing_RNA_final_arg.R), resulting in two tab separated files: the RNA-seq
and microarray expression profiles, from which the stress-specific bi-
omarkers were derived, and the reduced version of BacillusRegNet da-
taset, which was used for plotting the genetic interactions of these bi-
omarkers.

The gene expression data were pre-processed in order to make the
values of the RNA-seq and microarray gene expression comparable. The
different approaches tested contained one batch correction and at least
one normalization step (Normalisation_trials folder). In the normaliza-
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tion, the process that homogenizes the scale of the expression data, two
different methods were tested: minimum-maximum normalization (min-
max) and quantile normalization (QN). Min-max normalization adjusts
the distribution of each experiment to a scale of [0, 1] (1) (Chen, et al.,
2013). It was selected as a simple and computationally affordable meth-
od of scaling data (Chen, et al., 2013). Alternatively or in conjunction
with it, QN was applied since it is currently the best method to correctly
cluster different microarray samples keeping the biological variation
among genes’ expression (Muller, et al., 2016). QN equalizes the expres-
sion intensity of the genes in the same quantile among samples, provid-
ing the same boxplots for all the samples (Table 2) (Muller, et al., 2016).

X~ Xmin
Xmax~Xmin (1)

Batch effects are technical artefacts not related to the system under
evaluation but with the external conditions in which the experimentation
is conducted (Muller, et al., 2016; Sun, et al., 2011). It has been probed
that normalization is not enough to remove batch effects (Muller, et al.,
2016; Sun, et al., 2011). RNA-seq and microarray experiments determine
the expression intensity of each locus using radically different proce-
dures: while RNA-seq sequences mRNA, microarrays hybridize it to
probes on a chip. Therefore, the differences in the expression data arising
from the different experimental settings do not have a biological origin
and they can be associated to the variability between to two different
batches. In this way, the differences between RNA-seq and microarray
expression data were corrected using the Combat function from R sva
package (Table 2). This function takes into account that the bias of a
batch is common across all its samples to estimate a batch parameter
utilized for correcting the batch effects with an empirical Bayesian
method (Johnson, et al., 2007).

In order to check the degree of integration of RNA-seq and microarray
samples during the different pre-processing tests, Ward’s hierarchical
agglomerative clustering algorithm with Euclidean distance was used
(Ward, et al., 2001). Similarly, the equivalence of the distribution of the
expression data among samples was checked using boxplots.

Once the best pre-processing technique was selected, technical repli-
cates were averaged and stress samples were tagged as STRESS inde-
pendently of the time point when the sample was drawn. In this way, the
biomarkers retrieved are indicative of the exposure to the specific stress-
or and not of a temporary response (Scale_Normalise_batch.R).

According to the central limit theorem, the distribution of a random
variable tends to a Gaussian distribution for a high number of samples;
therefore, it was assumed that the expression values of each gene were
normally distributed for CONTROL and STRESS groups and a two-
tailed Student’s t-test was applied to obtain the degree of differential
expression of a feature in terms of p-values, this is, the probability of
rejecting the null hypothesis (the expression does not change between
stress and control samples) when it is true.

2.3.2. RGIFE heuristic

The gene expression matrix containing SAMPLE and CONTROL tags
was transformed into .arff format (To_arff.R). The parameters set as
input to RGIFE were selected for it to be highly restrictive: one repeti-
tion of a 10-fold distributed-balanced stratified cross-validation scheme,
which assigns close-by samples to different folds so each fold contains
representatives of every cluster (Zeng and Martinez, 2000), one misclas-
sified sample to identify a soft tail, random forests with 3000 trees and a
maximum depth of five and a misclassification cost of one (Lazzarini et
al., unpublished(Swan, et al., 2015). The metric used to evaluate the

performance of the classifier was “robust_accuracy”, which divides the
overall number of correctly classified samples across folds by the total
number of test samples. The biomarkers resulting from 10 executions of
RGIFE were unified so as to obtain a broader range of biomarkers using
the polices.py option of RGIFE (Lazzarini, et al., unpublished).

2.3.3. RF-RFE and SVM-RFE

RF-RFE and SVM-RFE were utilized in order to select the features
whose expression is more distinctive of stress or control conditions. Both
were executed 200 times so as to return the frequency of each feature
being selected as the most discriminative biomarker.

For RF-RFE, RF classifier was executed using the function
sklearn.ensemble.RandomForestClassifier (Table 2) with the recom-
mended parameters (scikit-learn.org): size of the random subset of fea-
tures checked for each node set to the square root of the total number of
features and each tree spanned until pure leaves. The number of trees in
the forest (T) was 10 when checking the performance of the pre-
processing schemes, otherwise it was optimized since the documentation
did not provide an adequate value for it. RFE was manually implemented
with gini impurity index as the ranking criterion and one feature re-
moved per iteration (Breiman, 2001; Chen, et al., 2013; Pedregosa, et al.,
2011).

For SVM-RFE, SVM classifier was executed with a linear kernel us-
ing the function sklearn.svm.LinearSVC() with the default parameters.
The penalty assigned to the error term (C) was one in the pre-processing
schemes, otherwise it was subjected to optimization. The weight of each
feature in the margin’s location was used as scoring criterion by the RFE
executed with the function sklearn.feature_selection.RFE() with one
feature removed per iteration. The scripts to execute RF-RFE and SVM-
RFE were stored as the Python’s module Classifiers_module (Table 2),
which is also able to directly run from shell.

2.4. Visualization of the GRN of biomarkers in Cyto-
scape

The number of entries of BacillusRegNet dataset was reduced to the
subset of interactions in which the biomarkers resulting from RGIFE
participated (RGIFE_to_cytoscape.R). This network was uploaded into
Cytoscape using the instructions in Cline, et al., 2007. Nodes’ key attrib-
ute was the gene symbol and edges tip distinguished between positive
interactions (arrow tip), negative interactions (T tip) and sigma factor
(straight line). The target binding sequence was included as an edges’
attribute. The nodes corresponding to the genes retrieved by RGIFE were
represented in a different color. From them, the genes also retrieve by the
RF-RFE and SVM-RFE in more than 10% of the executions were high-
lighted. The housekeeping sigma factor ¢* was removed of some plots so
as to improve the clarity. The Cytoscape’s plugin jActiveModules was
executed to retrieve highly significant subnetworks importing the p-
values of the Student’s t-test analysis as node’s attribute (Ideker, et al.,
2002).

2.5. GO scoring

GO defines standard terms to refer to the domains Molecular Function,
Biological Process and Cellular Component, which reflect to the ele-
mental function, biochemical process and subcellular location of the
protein encoded by a gene (www.geneontology.org). Terms are orga-
nized as a directed acyclic graph, where each term can share parent-child
relationships with others so that it is possible to calculate the distance
between two GO terms (www.geneontology.org).
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Therefore, the GO score used as fitness function of the optimization
step was defined as the semantic proximity between the GO terms of the
biomarkers retrieved by RF-RFE or SVM-RFE and the biotic and abiotic
stress GO term GO:0006950 with its 33 child terms. This score was
calculated using the function mgoSim from the R package GOSemSim
(Table 2) with Wang’s distance, which utilizes the topology of the GO
graph to compute the distance between terms (Wang, et al., 2007). The
only GO domain considered was Biological Process since it contains the
stress terms. Then, the scores of all the GO terms of the same biomarker
were combined using “max” method, which only keeps the maximum
score. This method was selected as some biomarkers might be multifunc-
tional, so the GO associated to non-stress functions would decrease their
total score.

2.6. Optimization of the classifiers
As a first attempt, simulated annealing was utilized to optimize the pa-
rameters T of RF and C of SVM using the GO scoring as fitness func-
tion. The neighbors of each accepted state were the values +10 positions
away of it, the feature selection was executed 200 times and the most
explanatory classifier on each execution was returned. The maximum
temperature was set to 0.5, minimum temperature to 10° and the number
of steps to 30. For T, the optimization was carried out between 5 and 50
trees (optimisation_rforest.py), whereas for C the range of values
spanned from 0.1 to 4.6 in steps of 0.1 in order to discretize and equalize
the search space of T (optimisation_SVM.py).

Then, a brute-force or exhaustive search algorithm was implemented
and applied to obtain the best parameter using the same search spaces as
in simulated annealing. This algorithm executes the 200 iterations of the
feature selection routine three times per value of the target parameter and
then it creates a boxplot showing the median and the two extreme values
as the whiskers using the Python’s package matplotlib (Table 2).

2.7. Genetic circuit modelling and synthesis

A genetic C-element was manually designed using the guidance of the
majority gate circuit kindly provided Dr. Khomenko using Workcraft
(Poliakov, et al., 2009) (Fig. 2). The translation of the majority gate into
a genetic-implementable circuit was carried out at a transcriptional level
harnessing the library of repressors orthogonal to TetR described to be
functional in E. coli and mammal cells (Stanton, et al., 2014; Stanton, et
al., 2014). This approach ensures that the C-element black box could be
plugged to any input or output signal in B. subtilis as long as none of the
repressors is present in the chassis. The repressors that had less toxicity
and did not belong to Bacillus species were chosen.

repressible promoters set as inputs of the gate. NOT gates were designed
using a single transcription unit encoding a repressor and regulated by an
input repressible promoter. Lastly, NOR gates utilised a single transcrip-
tional unit in which the coding sequence was regulated by a constitutive
promoter containing all the input repressible operators. CDSs that shared
the same promoter were combined into a single transcriptional unit. The
native Ribosome Binding Sequences (RBS) of each biomarker and the
optimized RBS of the repressors (Stanton, et al., 2014) were used.

Once the abstract design of the genetic C-element was accomplished,
it was converted into a Petri net and digitally simulated using Workcraft
(Poliakov, et al., 2009). Finally, the genetic design was written using the
Synthetic Biology Open Language (SBOL) 2.0 (Bartley, et al., 2015), a
data standard developed to computationally exchange synthetic biology
designs (celement folder with the Java script to generate SBOL cele-
ment.sbol). In this way, this black box implementation can be easily
reusable and visualised using VisBOL (McLaughlin, et al., 2016), a
platform for the graphical visualisation of genetic designs. VisBOL
platform uses the set of glyphs defined by SBOL Visual (Quinn, et al.,
2015) in order to standardise the representation of genetic circuit.

2.8. Experimental approach

Microarray and RNA-seq dataset contained samples corresponding to
different stresses and growth condition. Samples not subjected to the
stress under analysis were used as controls so as to ensure that the ob-
served differences are specific to the target stress and are not part of the
general stress response. For example, when the oxidative stress was the
target stress, the samples treated with diamide, paraquat and H,0O, were
tagged as STRESS samples, whereas the remaining 154 samples were
considered controls.

3 Results
All the scrips, documentation and a tutorial of the biomarker retrieval
algorithm are uploaded into

https://deliacp@bitbucket.org/deliacp/scripts.git. The biomarker retrieval
algorithm was implemented using different programming languages
wrapped using bash script, the language that automates the execution of
Linux shell commands (bash_file).

RNA-seq GO score
exhaustive
4428 optimisation
features (3x per value)
200xFeature
Tiling array Pre- Union selection Muller C-
;— Pprocessing 10xRGIFE (RF/SVM) + element
5876 RFE
features 855 5-60 2
features features features
Bacillus Bacillus Bacillus
RegNet RegNet RegNet
864 nodes
1264 edges

g0
in1o
> ouf]
g3 95
—
o EH:)}—LD’J
g1 g4

Fig. 2. Gate-level design of a majority gate C-element. Provided by Dr. Khomenko.

The majority gate had to be inverted in order to turn off the expression
of the output as a consequence of the onset of both input signals. Then,
the circuit was transformed into a combination of NAND, NOR and
NOT gates so that only repressors are needed for its genetic implementa-
tion. NAND gates were designed using different transcriptional units
with the same coding sequence but each of them regulated by one of the

Fig. 3. Workflow of the stress-specific biomarker retrieval algorithm. A total of 855
features remained after the integration of the three original datasets. The expression data
were pre-processed and set as input to 10 RGIFE runs. An exhaustive optimization of T
and C was run before the execution of 200 repetitions of RF-RFE or SVM-RFE with the
union of the features retrieved by RGIFE. The regulatory sequences of the top two fea-
tures common to both routines were used as an input for a C-element circuit.

The general workflow of the developed tool (Fig. 3 and 4) integrates
the entries of RNA-seq, microarray and BacillusRegNet data. As a result,
the 855 features kept were contained in all the datasets. The integrated
RNA-seq and microarray data were subjected to a pre-processing step so
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as to normalize and correct the batch effects. Then, 10 repetitions of
RGIFE were executed with the expression data of these entries to obtain
the set of features that are needed to distinguish between control and
stress samples. To discern which feature was the most discriminative, a
second feature selection was executed (RF-RFE or SVM-RFE) using the
expression data corresponding to the features retrieved by RGIFE as
input. On each step of RFE, the feature that had a smaller contribution to
the result of the classifier is removed until only one was remaining. This
feature was considered to be the one with the best discriminative power
but the result may change for different executions of feature selection
due to the stochasticity of the classifier. Consequently, SVM-RFE and
RF-RFE were repeated 200 times to obtain the frequency of each feature
being the most discriminative. This process was repeated three times per
value of the target parameter during the exhaustive optimization. Finally,
the regulatory sequences of the two features more frequently retrieved by
both feature selection algorithms were used as inputs of a C-element able
to ease the stress. During all the process, BacillusRegNet data was uti-
lized to plot the genes retrieved by the different feature selection algo-
rithms, highlighting regulatory cascades related to the target stress.

Merge RNA-seq, microarray and BacillusRegNet entries
Normalize, correct batch effects and label control and stress samples
for 1 to 10 {Run RGIFE}
Unite all the retrieved features
for T in 5:50/for C in 0.1:4.6 with steps of 0.1 {
forlto3{
repeat 200 times {(RF/SVM)-RFE with T/C}
% times each biomarker is the most discriminative
GO_score}}
Boxplot of the 3 GO scores per value of T/C
Select the parameter with the highest score and lowest variance
repeat 200 times {(RF/SVM)-RFE with the optimum T/C}
Use the two biomarkers with the greater % as inputs in the genetic circuit

Fig. 4. Sequence of eventes in the stress-specific biomarker retrieval algorithm. This
process, except the last step, was executed through the attached bash_file file.

Convert gene symbols into locus tags using the key in MicroScope {
Remove the entries with no locus tag
Merge the entries with the same locus tag}
Remove entries of BacillusRegNet that are not in RNA-seq and microarray
Remove entries of RNA-seq that are not in BacillusRegNet and microarray
Remove entries of microarray that are not in RNA-seq and BacillusRegNet
Merge RNA-seq and microarray using locus tags as keys

Fig. 5. Workflow of the integration of RNA-seq, microarray and BacillusRegNet
datasets. This step is contained in Tiling_RNA_final_arg.R

3.1. Integration of the RNA-seq, microarray and Bacil-
lusRegNet entries
3.1.1.Conversion gene symbols to locus tags

For this step it was taken into account that each locus can have several
gene symbols (for example, the locus BSU0003 is named as both rapA
and yaaA) and some gene symbols can refer to several CDSs in different
loci (ymfK is encoded in both BSU16890 and BSU16900). Once the
conversion was carried out, the locus tags were utilized to reduce the
three datasets to the subset of 855 common entries. RNA-seq and micro-
array profiles were merged into the gene expression matrix and Bacil-
lusRegNet data was used to plot the retrieved biomarkers (Fig. 5).

3.2. Selection of the normalization method

Three different tests were carried out since the order in which normaliza-
tion and batch correction are applied varies across literature (Sun, et al.,
2011). It has to be noticed that the microarray dataset was composed by
169 samples, whereas there were only six RNA-seq samples. Therefore,
the objective of this step was to select the approach able to integrate the
RNA-seq samples across the microarray samples (this is, fewer clusters
of RNA-seg-only samples after the application of Ward’s clustering),
able to return a more homogeneous distribution of the expression data
within samples (this is, similar boxplots) and able to derive consistent
biomarkers on both second feature selection routines using oxidative
stress as the target stress. The approaches tested were:

(1) Min-max normalization, batch correction and QN (Batch_min-
max_quantile.R)
The most sensible approach is to apply min-max normalization and then
correct the batch effects using the rescaled expression values. Then, QN
would ensure a similar distribution of the expression values. After this
pre-processing scheme was applied all RNA-seq samples were clustered
together, making it unsuccessful (data not shown). This was assumed to
be related to the application of a normalization step prior to the batch
correction, which masked the differences between RNA-seq and micro-
array samples. However, the boxplots were similarly distributed across
samples: they had a normal distribution with a median of 0.5, as corre-
sponds to the application of min-max and QN. The rest of the biomarker
retrieval algorithm was executed for oxidative stress with this normaliza-
tion routine and the biomarker retrieved in 100% of the SVM-RFE itera-
tions was trxA, which was also retrieved in 4% of the executions of RF-
RFE.
(2) Batch correction, min-max normalization
max_batch_quantile.R)

In order to improve the results of (1), the order of the batch correction
and min-max normalization was inverted. As a result, there were only
two clusters with only RNA-seq samples, one composed by two RNA-
seq oxidative stress samples and another by two RNA-seq control sam-
ples. Even though these clusters did not contain any microarray sample,
they did not grouped control and stress samples together. The boxplots
obtained were equal for all the samples but they are skewed towards low
expression values. This result confirmed that the integration performance
is better when the batch correction is carried out before the normaliza-
tion, although the homogeneity diminishes. This indicates that the order
of application of the batch correction imposes a trade-off between the
correction of the inter-sample variability and the homogenization of the
intra-sample distribution of the expression data. When the rest of the
biomarker retrieval algorithm was executed with this normalization
routine, the biomarkers retrieved by RF-RFE and SVM-RFE did not
match. SVM-RFE retrieved gltA in 100% of the iterations, whereas this
gene was only returned in 0.5% of the executions of RF-RFE. This lack
of consistency between feature selection algorithms was also observed in
(1), which points out to the pre-processing masking the biological differ-
ences between genes’ expression. As a result, small differences in the
features selection algorithms can lead to entirely different features se-
lected.

and QN (Min-

(3) Batch correction and min-max normalization (Batch_min-max.R)
A simpler version of the previous pre-processing schemes was applied to
test if the lack of concordance between SVM-RFE and RF-RFE was due
to an excessive modification of the expression data during the pre-
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processing. In this new trial the QN step was omitted. The hierarchical
clustering returned two RNA-seq stress and one RNA-seq control sam-
ples clustered together. Furthermore, the boxplots showed that the data is
skewed towards low values of expression and there were great differ-
ences in the distribution of the expression values between RNA-seq and
microarray samples (data not shown). Even though the results of this pre-
processing scheme did not seem promising, the biomarkers retrieved by
SVM-RFE and RF-RFE for oxidative stress were similar: manA was
returned in 100% of the iterations of SVM-RFE and in 29.5% of the
iterations of RF-RFE. As a result, this last pre-processing scheme, con-
sisting on batch-correction and min-max normalization, was selected due
to the consistency of the biomarkers retrieved and its low computational
cost.

We can measure the goodness of the pre-processing ranking from one to
three the pre-processing schemes according to the degree of normaliza-
tion and integration of samples, where one is the lowest score (Table 3).
Taking into account the degree of concordance of RF-RFE and SVM-
RFE, it was shown that the score for the pre-processing is inversely
proportional to the classifiers” agreement. These results suggest a corre-
lation between the degree of pre-processing and the concordance of the
biomarkers retrieved by the two feature selection procedures: methods
that are able to thoroughly integrate and normalize RNA-seq and micro-
array samples did not provide consistent biomarkers, probably because
the data had been extremely processed, increasing the number of arte-
facts and leading to a lack of robustness in subsequent processes.

Table 3. Scoring of the pre-processing schemes according to the normal-
ity of their final boxplots, the integration of the RNA-seq samples and
the concordance of the biomarkers retrieved by RF-RFE and SVM-RFE.

SVM in terms of overfitting and accuracy in metabolic data analysis for
biomarker selection (Chen, et al., 2013). The RFE algorithm implement-
ed (Fig. 6) contained as ranking criterion gini impurity index for RF and
the weight of each feature for selecting the support vectors in SVM.

Load expression matrix (E"), where n € [RGIFE-retrieved features]
run 200 times {
i=n
while length(i) # 1 {
Train a classifier with E'
Rank(i)
Remove the least important feature (i =i - 1)}
Add i to the set of biomarkers}
return (frequency of biomarkers)

RFE

Pre-processing min-max + batch + min- batch +
procedure batch + QN max + QN min-max
Normality 3 2 1
Integration 1 3 2
TOTAL 4 5 3
Concordance 2 1 3

3.3. Feature selection algorithms

After the execution of 10 iterations of RGIFE, all biomarkers retrieved
were subjected to one more step of feature selection so as to obtain the
gene whose expression is a better predictor of stress. RGIFE used a 10-
fold cross-validation scheme, where samples are divided into 10 sub-
samples, of which one is used as validation dataset and the remaining as
training dataset for building a RF classifier. In this way, RGIFE can
measure the accuracy of the classification using the validation subset so
as to retrieve the minimum number of features able to train a maximum
accuracy classifier. When the second feature selection algorithm is ap-
plied, the less discriminative features are removed one by one so that the
accuracy of the classifier is always going to decrease. For this reason, a
cross-validation scheme was not included in the second step of feature
selection.

Among the multiple options of feature selection algorithms, RFE was
selected as it is an embedded method specifically designed for the analy-
sis of microarray experiments (Guyon, et al., 2002). RFE is typically
coupled with SVM, whose performance has demonstrated to outperform
other classifiers (Bolon-Canedo, et al., 2014; Guyon, et al., 2002). More-
over, RFE was executed with another classifier so as to be able to com-
pare results. RF was selected as this second classifier as it outperformed

Fig. 6. Scheme followed by RF-RFE and SVM-RFE.

3.4. Optimization of the classifiers

The parameters T and C did not have recommended values in the re-
viewed literature even though they have a great impact in the result of
their respective classifier; consequently, they were subjected to optimiza-
tion using a heuristic and an exhaustive method. T determines the num-
ber of bootstrap samples or trees that are taken into account for building
the RF. For high values of T, RF classifications would converge to the
same solution (Breiman, 2001), but their computational cost impedes
their usage. On the other hand, parameter C reflects the trade-off be-
tween the maximization of the margin and the error in the classification
of the training sample in SVM. It is recommended to use a low C for
noisy data as it returns more robust results, or to increase it for retrieving
more highly weighted biomarkers (Pedregosa, et al., 2011).

3.4.1.Fitness function: GO score

The fitness function to be optimized was the GO score, i.e., the extent to
which the retrieved biomarkers are related to a stress process. This score
is provided by the semantic similarity of the biomarkers’ GO terms to the
stress term GO:0006950 and its child terms. A drawback of this fitness
function is that it would prevent the optimized feature selection from
returning uncharacterized genes.

frequency;

Scoregpg = Y; GOscore; 100

)
Where RFE is either RF-RFE or SVM-RFE, i is each biomarker retrieved by 200 itera-
tions of RF-RFE or SVM-RFE, GO score is the score of the biomarker i and frequency is
the percentage of the executions in which the biomarker i is the most discriminative.

Firstly, the GO terms of the 4197 proteins in Bacillus subtilis subsp.
subtilis str. 168 reference proteome (UniProt proteome 1D
UP000001570) were retrieved (locus_go.py). The resulting tab separated
file was used as a library for mapping the locus of each feature returned
after the 200 iterations of the RFE routines to its GO terms. Then, the
function mgoSim (Yu, et al., 2010) was used to calculate the semantic
similarity of each biomarker and the stress GOs. The percentage of times
each biomarker was the most discriminative was used to weight its score
and, finally, obtain the GO score (2).

3.4.2.Simulated annealing

The parameter T takes integer values and both RF and SVM make use of
pseudorandom number generators. Therefore, the solution of the fitness
function changes in each execution for the same value of the parameter.
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Fig. 7. Boxplot of the optimization of T in RF-RFE (A) and C in SVM-RFE (B) for oxidative stress. Y-axis contains the score obtained by the biomarkers in the three executions of

the 200 iterations of the feature selection algorithm per value of the parameter, contained in x-axis.

As a result, a stochastic combinatorial optimization was needed, for
which simulated annealing was selected as it is the most adequate heuris-
tic for combinatorial optimization (Perry and Wagner, 2014). This heu-
ristic, executed through simanneal2 package (Table 2), was used to
obtain the value of T and C able to retrieve the oxidative stress bi-
omarkers with a greater GO score (Fig. 8). The search space of C was
discretized so that its search space is the same as T’s.

P =[pl, p2, ..., p46], where p is the value of the parameter; Tmax = 0.5;
Tmin=10"; steps = 30
Initial conditions: new_state = random(P), T=Tmax
from 1 to steps{
current_state = new_state
classifier_RFE (200 iterations, parameter = current_state)
GO_score (classifier_RFE)

if not (GO_score < GO_score_accepted) AND

( Goscore,acce;:‘ted_ GOscore > I’andom([O,l]))

{accepted_state = current_state}
~n{r
steps

)*step
T =Thax ¥ €

new._state = accepted_state +10}

dom initial state, even when the space for neighbors’ selection was in-
cremented. Another issue was the stochasticity of the classifiers, which
prevented GO scores from being consistent. Accordingly, the heuristic
strategy was discarded due to the lack of consistency of the resulting
optimum parameter in different executions.

3.4.2. Exhaustive search

The variability in the classifier made it possible to apply descriptive
statistics to the GO scores obtained after three executions of the feature
selection with the same parameter (Fig. 7). Because of T being a discrete
parameter and the size of search space of C being equalized to T’s, the
search space was limited to 46 values, which made it feasible to repeat
the classifier several times per value. As a consequence, an exhaustive
search optimization was applied to T and C (Fig. 9). The smaller value
of the parameter able to compute a high GO score with a small variabil-
ity was used to execute again 1 repetition of the 200 iterations of the
classifier-RFE and obtain the ranking of features.

Initial conditions: P = [p1, p2, ..., p46]
forpinP {
repeat 3 times {
Classifier-RFE (200 iterations, parameter = p)
GO_score (classifier_RFE)}
boxplot showing the median and standard deviation}

return saved_state for maximum GO_score

Fig. 8. Scheme of simulated annealing optimization implemented using simanneal2
package (Perry and Wagner, 2014). Classifier referes to either RF or SVM and parameter
is T in RF and C in SVM.

After 30 iterations of RF-RFE and SVM-RFE, simulated annealing
was not able to converge to any good solution (data not shown). This
failure occurred even with a higher maximum temperature and more
iterations. A possible reason is that the heuristic failed to explore the
search space of the parameters since it stayed in values close to the ran-

Fig. 9. Scheme for exhaustive optimisation, where P is the search space of either T or C
and classifier is either RF or SVM.

3.5. Application of the biomarker retrieval algorithm
The biomarker retrieval algorithm was applied to oxidative and heat
stresses. Since different oxidative stressors can cause different responses,
subsequent analysis targeted the stress caused by each individual oxida-
tive agent to check the dependence of the oxidative response upon the
oxidative agent employed.
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3.5.1.0xidative stress

After the pre-processing, the 21 oxidative stress samples were tagged as
STRESS and the remaining 154 samples as CONTROL. A Student’s t-
test was applied and the p-values associated to each gene’s expression
were obtained. These p-values were used to execute jActiveModules for
BacillusRegNet entries.
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Fig. 10. Differentially expressed regulatory modules in samples subjected to oxida-
tive stress as retrieved by jActiveNetworks. SigA has been removed for simplicity.

Table 4. Oxidative stress biomarkers after 200 iterations of RF-RFE
(T=48) and SVM-RFE (C=0.1). It shows the percentage of times each
biomarker is returned as the most explanatory, the p-values after a two-
tailed Student’s t-test and the difference between the average expression
values of control and stress samples.

CDS Description RF- SVM-  p- Control-
RFE RFE value  stress
(%) (%)
manA  Mannose 6-P 41.0 100 10° -0.257
isomerase
yxeB  Iron binding 235 10* -0.090
protein
gltA Glutamate 21.5 0.775  -0.017
synthase
treP Trehalose 12,5 10° -0.238
transporter
clpP Protease 1.0 10? -0.136
fop Fructose 1,6- 0.5 10? -0.131

bisphosphatase

The differentially expressed subnetworks contained genes previously
described as participants in the oxidative stress response (Fig. 10)
(Helmann, 2016; Mols and Abee, 2011; Zuber, 2009). The main coordi-
nators of these subnetworks were the transcription factors Fur, LexA,
CcpA and GIpP. Fur represses the expression of proteins involved in the
uptake of iron in the presence of this metal (Zuber, 2009) and LexA
represses the genes that responds to DNA damage (Mols and Abee,
2011). CcpA and GIpP are regulators of the carbon metabolism in B.
subtilis: CcpA is the main coordinator of the glucose-mediated catabolite

repression (Wacker, et al., 2003), whereas GIpP is involved in the tran-
scription of the genes responsible for the uptake and degradation of
glycerol (Lewin, et al., 2009). The last hub was SigX, an extracytoplas-
mic function sigma factor involved in cell envelope homeostasis whose
mutant versions cause hypersensitivity to oxidative and heat stresses
(Helmann, 2016).
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Fig. 11. First degree in and out interactions of the genes found by RGIFE (red and

orange nodes) for oxidative stress as contained in BacillusRegNet data. The bi-
omarkers obtained as the most explanatory in more than 10% of the executions of RF-
RFE and SVM-RFE are represented as yellow nodes.

The 10 repetitions of RGIFE returned a total of 45 genes needed to
distinguish between oxidative stress and control samples with the maxi-
mum accuracy. Plotting the interactions of these genes using Bacil-
lusRegNet data, a pattern of alternate RGIFE biomarker and non-
biomarker was revealed (Fig. 11). Biomarkers are typically the target of
the interaction, whereas non-biomarkers are the transcription factors that
enable them to have a different expression profile in the stress condi-
tions.

The values selected for T and C after the exhaustive optimization were
48 and 0.1, respectively (Fig. 7). These values were applied to RF-RFE
and SVM-RFE resulting in manA, yxeB, gltA and treP being the genes
with the largest discriminative power, all of them significantly upregu-
lated except gltA (p > 0.05) (Table 4). Of them, yxeB, manA and treP are
also contained in a differentially expressed module (Fig. 10). Looking at
their interactions, gltA and treP participate in the same regulatory net-
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work but they are regulated by different transcription factors, yxeB is
regulated by Fur and manA does not have any known interaction with
transcription factors (Fig. 11).

Regarding their functions, TreP is involved in the uptake of trehalose
and it is repressed by CcpA and TreR, a repressor of the trehalose utiliza-
tion operon in absence of this disaccharide (Fig. 11) (Rezacova, et al.,
2007; Wacker, et al., 2003). GItA is part of the glutamate synthase com-
plex, the only enzyme able to synthesize glutamate in B. subtilis
(Wacker, et al., 2003). yxeB encodes a ferrioxamine-binding protein that
participates in the uptake of this iron-coordinated complex (Ollinger, et
al., 2006). Lastly, manA encodes a mannose 6-phosphate isomerase
essential for the catabolism of mannose (Sun and Altenbuchner, 2010).

3.5.2.Diamide, H,0O, and paraquat biomarkers

The high number of biomarkers needed to distinguish oxidative stress
samples pointed out to distinct responses to different stressors. To check
this hypothesis, the same analysis was executed for each oxidizing agent
individually. RGIFE retrieved a total of 10 features for diamide-treated
samples (12 samples), 4 for H,O, (6 samples) and 2 for paraquat (3 sam-
ples). These preliminary results show that the number of biomarkers
retrieved by RGIFE increases with the number of stress samples, which
may be due to the inter-sample variability not being totally corrected
during the normalization.

(A) Diamide

w

ﬂ\

encodes the isocitrate dehydrogenase that catalyzes the oxidation of
isocitrate to a-ketoglutarate coupled with the reduction of NADP* to
NADPH (Kim and Colman, 2005).

Table 5. Diamide, H,O, and paraquat stress biomarkers after 200
iterations of RF-RFE and SVM-RFE. It displays the percentage of
times each biomarker is returned as the most explanatory, the p-values
after a two-tailed Student’s t-test and the difference between the average
expression values of control and stress samples.

Diamide (T=5, C=0.1)
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Fig. 12. First degree in and out interactions of the genes found by RGIFE (orange and
yellow nodes) for diamide (A), H,O, (B) and paraquat (C) stresses as contained in Bacil-
lusRegNet dataset. Biomarkers obtained as the most explanatory in more than 10% of the
executions of RF-RFE and SVM-RFE are represented as yellow nodes.

After the application of RF-RFE and SVM-RFE with the optimum pa-
rameters, the genes whose expression is determinant of treatment with
diamide were gltA, IytE and treP (Table 5, Fig. 12A). gltA and treP are
common to the oxidative stress response but in the treatment with dia-
mide gltA is downregulated, whereas treP upregulation is kept (Table 5).
IytE, downregulated during treatment with diamide (p<0.01), encodes an
enzyme for the degradation of the peptidoglycan (Kasahara, et al., 2016).

The biomarkers obtained for H,O, were yxeB and uvrB (Table 5),
both significantly upregulated (p<0.05). yxeB was also found as an over-
expressed biomarker in the oxidative stress response (Table 4). uvrB was
retrieved by both RF-RFE and SVM-RFE and it encodes the DNA dam-
age recognition subunit of UvrABX complex.

The samples treated with paraquat are only characterized by one bi-
omarker, icd (Table 5). icd, downregulated in stress samples (p<0.01),

Symbol  Description RF-  SVM-  p- Control-
RFE RFE value stress
(%) (%)
gltA Glutamate syn- 49 10?7 0.0819
thase
IytE Peptidoglycan 25.5 10* 0.0421
endopeptidase
treP Trehalose trans- 125 100 10 -0.1837
porter subunit
clpP Proteolytic subu- 5 10° -0.0649
nit
dinB Protein DinB 35 10* 0.0208
lonA Lon protease 1 25 10* -0.0574
yikN Nucleotide phos- 1 10 0.0724
phoesterase
"”ﬁ’z o yrgA Cysteine protease 0.5 10°® -0.0536
T T T ‘T’ cysK Cysteine syn- 05 10°® -0.0298
—— = —_ thase
- — H,0, (T=11, C=0.1)
(€) Paraquat yxeB Iron(3+) binding 50.5 0.0423  -0.382
] = protein
Tl :’: uvrB UvrABC system 335 100 0.0369  -0.393
=] =] protein B
ftsH Metalloprotease 9 0.0454  -0.246
katA Catalase 0.0135  -0.449
Paraquat (T=50, C=0.1)
icd Isocitrate dehy- 100 100 107 0.109
drogenase

3.5.3.Heat stress

The same analysis was conducted for heat stress so as to double-check
the stress-specific biomarker retrieval algorithm. A total of six microar-
ray samples cultured at either 48°C or 51°C were tagged as STRESS and
RGIFE returned two features, the chaperone htpG and the benzoate
dehydrogenase dhbA. Finally, the most predictive gene for heat stress
was htpG, returned 100% of the times in 200 iterations of both RF-RFE
(T=6) and SVM-RFE (C=0.3).

3.6. Genetic C-element
The abstract model of an inverted genetic C-element was implemented
based on a majority gate (Fig. 14). The inputs of the circuit were the
promoters repressed by Betl and LitR and the output was the CDS of the
transcriptional repressor PsrA, which represses the expression of the
target CDS (VioB in the example, Fig. 14).
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This design can be utilised as a black box to be coupled to any two in-
put signals that activates the expression of betl and litR. In the same way,
the output of the circuit could be any CDS regulated by the promoter
repressed by PsrA. This circuit was transformed into a Petri net (Fig. 13)
and a digital simulation was carried out (Fig. 15). It could be observed
that the expression of vioB is repressed when both Betl and LitR are
present. Under this circumstances, the presence of Betl activates the
expression of gacR, while, in turn, the presence of LitR activates the
expression of srpR. QacR and SrpR are both needed to switch on icaR to
activate vioB. On the other hand, the absence of both Betl and LitR is
needed to sequentially inhibit gacR, activate icaR and inhibit srpR. Only
after this sequence of events the absence of SrpR switches on the expres-
sion of vioB. It was confirmed that the state of vioB does not change
when only one input is present (Fig. 15).

AmtR
Betl o——
VioB
PR McbR  PstA Vi
—
LitR o—=
PhIF QacR feaRk

Fig. 14. Logic-level design of an inverted genetic C-element circuit. The inputs of the
circuit are the promoters repressed by Betl and LitR, whereas the output is PsrA, control-
ling the expression of vioB in the example.

Once the mechanism of the inverted C-element was checked, it was
utilized to cope with oxidative stress. The promoters of the two highest
scoring oxidative stress biomarkers, manA and yxeB, were used as inputs
of a C-element circuit that will result in the activation or repression of
the expression vioB so as to ease the stress. vioB is a gene of 2997bp that
encodes the enzyme VioB from Chromobacterium violaceum (Balibar
and Walsh, 2006). VioB is not functional in B. subtilis, but it is able to
subject cells to a high metabolic burden due to its large size (Smith, et
al., unpublished). manA and yxeB are overexpresses under oxidative
stress and, therefore, their promoters would induce the expression of betl
and litR, respectively. However, for other stresses, if any of the bi-
omarker genes is downregulated, another NOT gate is needed upstream
of betl or litR.

Bet! N
LitR

VioB

lcaR | — - "I‘l —
QacR AN \i~ AND, D
Fig. 15. Digital simulation of the inverted C-element. The transitions of the two inputs

(Betl and LitR) trigger the sequence of transitions of the internal signals IcaR, SrpR and
QuaR that switches on or off the expression of vioB.

This design was written in SBOL 2.0 using the sequences of the ele-
ments as DNAcomponent and defining the transcription repressions as
PromoterRepression (Fig. 16). The promoter of manA was ob-
tained from the promoter of the operon manPA-yjdF. Its sequence spans
from the previous CDS (manR) to the last non-transcribed nucleotide,
42bp upstream of ATG (Sun and Altenbuchner, 2010). The RBS of
manA was taken from its 5° UTR. The promoter of yxeB was selected as
the 94bp from 184bp to 90bp upstream of the initiation of the translation.
This region contains the binding site of Fur and a multiple sequence
alignment with Clustal Omega against several prokaryotic promoters
predicted that it contains the RNAP binding site. The remaining 90bp
upstream yxeB were considered as yxeB’s RBS. The weak and constitu-
tive promoter of the liaG gene was used for the implementation of the
NOR gate. The fluorescent reporters rfp, cfp and gfp, whose emission
and excitation wavelengths do not overlap, were fused to betl, litR and
VvioB to track the activation and repression of these transcriptional units.

4 Discussion

This work describes the implementation and usage of a stress specific
biomarker retrieval algorithm. The folder of its source code contains a
user guide with a description of its different options as well as a tutorial
that ensures its reproducibility (README). The retrieved biomarkers
were plugged to an inverted C-element. Although in this project the
process is mainly applied to oxidative stress as a proof of concept, the
objective will be to use this algorithm and the genetic circuit to address
metabolic stress in synthetic strains. The overproduction of heterologous
proteins lessens the amount of energy and biomolecules available for
host’s housekeeping functions, limiting the growth rate, which leads to
metabolic stress and the subsequent loss of productivity (Carneiro, et al.,
2013). Once the metabolic load samples are obtained from cultures ex-
pressing the burdensome protein VioB (Smith, et al., unpublished), the
same process described here will be followed and the resulting genetic
circuit with the corresponding biomarkers will be tested in vivo.

A drawback of applying this approach to metabolic load is that the
maintenance and expression of the elements of the circuit may cause as
much metabolic load as vioB, so the expression of vioB would always be
off. If this occurs the regulatory sequences of the biomarkers used as
inputs of the circuit should be modify to raise the maximum intensity of
the signal that keeps the system off, so the circuit will only respond to
greater doses of stress. This task can be achieved by directed evolution
of the input promoters. Nevertheless, the size of the circuit should not be
a problem to the cells as the industrial overproducers can support large
fragments of synthetic DNA, usually containing several copies of the
heterologous CDS. Moreover, if the circuit is functional, the overproduc-
er strains bearing the C-element will have an adaptive advantage over the
cells not able to turn down the production of the burdensome gene and
they will be more prone to survival and fast growth.
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TetR repressor and its orthologous are inhibited by tetracycline, a drug
commonly used for the screening of mutants and expression induction in
recombinant bacteria. This means that the designed circuit can be
switched off adding this compound, so that strains based on tetracycline
are not compatible with the current implementation of the C-element.
Nevertheless, it is important to notice that tetracycline is the only com-
pound commonly used in genetic engineering that affects the functioning
of the circuit and that the circuit does not need the addition of external,
relatively costly substances such as IPTG or arabinose. During the digital
simulation of the genetic circuit it was observed that the sequence of
internal changes that leads to a change in the state of vioB differs be-
tween activation and inhibition as is characteristic of sequential logic,
where different sequence of signals may trigger a different output (Fig.
15) (Lou, et al., 2010).

Focusing now on the pre-processing, the results suggest that the num-
ber of biomarkers increases with the heterogeneity of the samples set as
STRESS. The more samples and treatments, the more biomarkers are
retrieved, as corresponds to a more diverse cellular response to a broader
range of threatens. This effect allows to uncover regulatory patterns that
may not be seen when a smaller array of samples is screened.
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Fig. 16. Genetic design for an inverted C-element able to respond to oxidative stress
using VisBOL (McLaughlin, et al., 2016). It modifies the expression of vioB (Output) as
a function of the oxidative stress biomarkers manA and yxeB (Input 1 and 2). Arrows
represent promoters, semicircles RBS, boxes operators, polygons CDSs and T termina-
tors.

As far as the feature selection algorithms are concerned, SVM-RFE
retrieved always the same biomarker in all the iterations, whereas RF-
RFE had more varied results (Table 4 and 5). This is due to a smaller
stochasticity of SVM as compared to RF since pseudorandom numbers
are only applied for shuffling the features before selecting them for fit-
ting the model. This characteristic makes SVM-RFE’s GO scores larger,
as there are not non-stress related biomarkers that diminish the score, but
prevents this feature selection routine from showing the contribution of
other features. This lack of variability added up to the overweighting of
experimental artifacts that arises from SVM’s overfitted models (Bolon-
Canedo, et al., 2014), makes SVM prone to retrieve features that account
for the noise and not for changes in the expression data. On the other
hand, the stochasticity of RF that originates from the random selection of
both the features per split and the bootstrap subset, makes it preferable
due to its ability to escape from experimental artifacts. Actually, it has
been described that RF-RFE overperforms SVM-RFE in finding small
sets of discriminative features (Granitto, et al., 2006). In conclusion, RF-
RFE is preferred as a second feature selection algorithm due to its ability
find alternative biomarkers, which allows it to prevent overfitting.

Once the feature selection was applied, the GRN of the biomarkers
showed that transcription factors were not identified as features able to
distinguish stress samples from controls (Fig. 11 and 12). This result
might be related to the differences in gene expression intensity having
been set as distinction criterion. Transcription factors react to regulatory
cascades with PTMs that modify their activity (Filtz, et al., 2014); hence,
their expression intensity does not usually need to vary to respond to
changes in the environment. They, in turn, modify the expression of the
proteins that allow B. subtilis to adapt to the harsh conditions.

These genes were treP, gltA, yxeB and manA in oxidative stress (Ta-
ble 4). The overexpression of treP, encoding a transporter of trehalose
(Table 4), suggests that B. subtilis requires a higher rate of uptake of
trehalose. This could be due to a greater demand of carbon for catabo-
lism and anabolism in order to deal with ROS disabling cellular struc-
tures and scavenging electrons from the oxidative metabolism, decreas-
ing its efficiency. Another possibility is a need to increment the pool of
osmoprotectants in the cytosol as typically occurs during desiccation.
The mechanism of overexpression of treP may be related to a possible
inactivity of the catabolite repression towards trehalose regulated by
CcpA (Fig. 11). This idea is compatible with the result of jActiveMod-
ules, which contained treP and other genes regulated by CcpA as part of
one of the differentially expressed modules (Fig. 10), and it is supported
by the fact that E. coli increases the metabolic flux through pathways
alternative to glycolysis during oxidative stress (Rui, et al., 2010). An
inactivation of TreP is discarded as the stress samples were not cultured
in the presence of trehalose.

On the other hand, gltA, encoding a subunit of the glutamate synthase,
is downregulated. Its transcription is repressed by TnrA in the absence of
glutamine and ammonium (Wacker, et al., 2003). Glutamate synthase is
the main link between carbon and nitrogen metabolism since it catalyzes
the conversion of a-ketoglutarate, an intermediate of Krebs’ cycle, and
glutamine into glutamate (Wacker, et al., 2003). The expression of gltA
is also induced by carbohydrates that increase the pool of a-ketoglutarate
via GItC and GItR (Fig. 11) (Picossi, et al., 2007; Wacker, et al., 2003).
Transcription regulators of the same family as GItC and GItR are in-
volved in zinc homeostasis and oxidative stress in Caulinobacter cres-
centus (Braz, et al., 2010). The upregulation of gltA may indicate that B.
subtilis is depleting carbon from Krebs cycle towards the synthesis of
glutamate. However, the overexpression of gltA is not statistically signif-
icant so this biomarker could be a false positive.
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yxeB, encoding a ferrioxamine chelant, is significantly overexpressed
in oxidative stress samples, which points out to an inactivation of its
repressor, Fur (Fig. 10 and 11) (Ollinger, et al., 2006). This is consistent
with ROS oxidizing Fe?* and preventing it from activating Fur (Zuber,
2009). In fact, both fur and yxeB are contained in a differentially ex-
pressed module (Fig. 10).

Lastly, manA is the most discriminative biomarker of oxidative stress
since it is retrieved in most of the iterations in both RF-RGIFE and
SVM-RFE. It is significantly overexpressed (p < 0.05) in the stress sam-
ples and it was also found by jActiveModules (Table 4, Fig. 10). manA
encodes the enzyme that transforms mannose 6-phosphate into fructose
6-phosphate, an intermediate of the glycolysis also used as osmoprotect-
ants for retaining water during desiccation stress. The overexpression of
manA may indicate a possible need of more energy or building blocks for
adapting to oxidative stress, but also a need for more osmoprotectants, as
it may be the case of treP. The increase of ManA and TreP, both in-
volved in boosting the pool of compatible solutes, may be explained by
the control dataset not containing samples subjected to desiccation. The
effectivity of the biomarker retrieval algorithm relies upon the range of
conditions included in the set of samples so that false positive bi-
omarkers are more likely to be avoided if a broader range of stresses is
included as CONTROL samples. Whether manA and treP are oxidative
stress specific biomarkers needs to be confirmed including desiccation
samples in the analysis.

In contrast to the oxidative stress response, in the diamide analysis
gltA is significantly downregulated (p < 0.01) (Table 5), indicating that
cells are committing carbon to Krebs cycle in detriment of the synthesis
of glutamate. Two possibilities arise regarding the destination of this
extra carbon: its catabolism so as to obtain the energy and reductive
power, or an increase in the pool of a-ketoglutarate. This last possibility
has been previously described in E. coli and Pseudomonas fluorescens,
where a-ketoglutarate is accumulated under oxidative stress conditions
because of its consumption of H,O, to form succinate in a non-enzymatic
oxidative decarboxylation (Mailloux, et al., 2009; Rui, et al., 2010).

The second most discriminative biomarker for diamide stress was IytE
(Table 5), which encodes the enzyme responsible for the degradation of
the peptidoglycan of the cell wall during cell elongation (Kasahara, et al.,
2016). It has been observed that certain bactericidal proteins, such as
PGRPs (mammalian Peptidoglycan Recognition Protein), are able to
bind disaccharide-pentapeptides in Gram+ bacteria so as to induce oxida-
tive, thiol and metal stress responses (Kashyap, et al., 2014). The down-
regulation of IytE during oxidative and thiol stresses induced by diamide
could be due to an endogenous cellular response triggered by the pres-
ence of oxidative and thiol damage. B. subtilis would interpret these
damages as a possible attack targeting products of the degradation of
peptidoglycan and it would decrease their presence downregulating IytE.

It is interesting to point out that the features lonA and clpP, overex-
pressed during diamide stress and retrieved with a low explanatory pow-
er (Table 5), are regulated by the transcriptional repressor CtsR (Fig.
12A), a central stress regulator that is targeted for degradation by McsB
upon oxidative and heat stresses (Stannek, et al., 2015). ClpP is part of a
protease complex that degrades misfolded proteins, while LonA is a
conserved protease that targets proteins damaged by oxidation in the
mitochondrial matrix of eukaryotes (Pinti, et al., 2015; Stannek, et al.,
2015). As expected by a similar transcriptional regulation, they increase
their production in the same order of magnitude (0.065 units for clpP and
0.057 for lonA) (Table 5).

All data provided suggests that the specific diamide response involves
the expression of proteases that degrade misfolded proteins, the stabiliza-
tion of the peptidoglycan in the cell wall and the redirection of the car-

bon metabolism towards the synthesis of the antioxidant a-ketoglutarate.
This response is radically different to the one of H,O, and paraquat.
During H,0, stress, the biomarkers uvrB and yxeB are overexpressed
(Table 5). UvrABX is in charge of the NER (Nucleotide Excision Re-
pair), which detects and replaces nucleotides in bulky DNA lesions
(Waters, et al., 2006). Oxidative stress and specially H,O, is known to
cause DNA damage (Imlay, 2015; Zuber, 2009), which is recognized and
targeted to repair by UvrB. On the other hand, icd is downregulated in
the samples treated with paraquat, a mechanism previously observed in
E. coli, where this herbicide induces the production of acetate. In this
organism, acetate inactivates lcd and turns down the production of
NADPH in favor of NADPH, diminish the amount of ROS produced in
the electron transport chain (Rui, et al., 2010).

All in all, the biomarkers of oxidative stress depend on the stressors
used to induce it. When all the stress samples are taken into considera-
tion, manA, yxeB, gltA and treP are retrieved (Table 4). From them, gltA
and treP are also found in diamide-treated samples, and yxeB is one of
the H,0O, biomarkers (Table 5). Nevertheless, IytE, uvrB and icd, also
found in diamide, H,O, and paraquat stress responses, are not found as
biomarkers of the general oxidative stress response and manA is not
present in any stressor-specific analysis (Table 4 and 5). manA could be
a false positive retrieved due to tagging samples subjected to various
treatments as STRESS, increasing the variability of the expression data
and making the processing more prone to be affected by artefacts.

The central regulators of the oxidative stress response LexA, Fur and
PerR are present in the GRN of the retrieved biomarkers (Fig. 11 and
12). However, the only gene retrieved from the set of detoxifying en-
zymes previously identified as indicative of oxidative stress was the
vegetative catalase katA for H,O, (Fig. 5) (Imlay, 2015), which indicates
either a bad performance of the biomarker retrieval algorithm or a lack of
need of those detoxifying enzymes in the response to some oxidative
stressors, probably in diamide’s. Interestingly, diamide’s deleterious
mechanism does not involve the generation of ROS, the targets of cata-
lase, superoxide dismutase and peroxidase (Kashyap, et al., 2014).

The application of the retrieval algorithm to heat stress retrieved htpG
exclusively. htpG is the only member of the type IV heat-shock regulon
in B. subtilis and encodes the chaperone HtpG (Schumann, 2003). The
mechanism of induction of this regulon is still no clear but it is consid-
ered to be triggered by a membrane or extracellular sensor (Schumann,
2003). Chaperones have been found to participate in the specific adap-
tive response to heat stress so as to prevent protein misfolding and ag-
gregation (de Nadal, et al., 2011). Moreover, it has been observed that
HtpG associates to the ribosomal protein L2 during heat stress in E. coli
(Motojima-Miyazaki, et al., 2010).

4.1. Limitations

Although generally the biomarkers found are consistent with the stress
under analysis, it was not clear the extent to which the RNA-seq samples
contributed to the result; consequently, the biomarker retrieval algorithm
was tested executing it for oxidative stress using only microarray sam-
ples. In this analysis SVM-RFE returned manA in 100% of the iterations
and RF-RFE returned manA (75%), treP (11.5%) and gItA (10.5%),
similarly to the biomarkers obtained when RNA-seq samples were also
included in the analysis (Table 4). This result indicates that the RNA-seq
samples are being neglected, possibly due to their reduced number in
comparison with microarray samples, preventing them from having a
real impact in the result of the algorithm.

On the other hand, the raw number of reads per CDS in the RNA-seq
samples does not provide a measurement able to compare the expression
of different CDSs since the ones that are longer have a greater number of
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reads for the same level of expression. A scaling that would provide a
better metric of the expression intensity would be RPKM (reads per kilo-
base per million of mapped reads). The RPKM scaling (3) was applied to
the RNA-seq entries adding this step to the integration process
(Scale_Normalise_batch_RPKM.R). After applying the rest of the bi-
omarker retrieval algorithm targeting oxidative stress SVM-RFE (C=0.1)
retrieved manA in 100% of the executions and RF-RFE (T=25) returned
ylaC 32.5%, fbp 24.5%, comZ 22.5% and lonA 19.5%. These results are
different from the ones obtained when the RPKM approach was not
applied (Table 4), which indicates that RNA-seq samples influence the
results only when the RPKM scaling is applied. Future work will check
the biomarkers obtained for other stresses applying this new scaling step.

raw reads 10°
RPKM = CDS length * total number of reads (3)
Another improvement will consider genes as part of operons instead
of individual transcriptional units. In prokaryotes, CDSs that encode
proteins participating in the same pathway are often organized in operons
regulated by the same promoter so that they should have an equivalent
level of expression. Consequently, the execution of this tool targeting the
overall expression of operons instead of single CDSs would prevent false
positives.

4.2. Future work

The different software used for the biomarker retrieval algorithm heavily
depends on several parameters that are kept as default. In the current
work the only ones tuned belong to the second feature selection step but
it would be interesting to tune some of the parameters used by RGIFE or
the pre-processing. The optimisation of more than one parameter re-
quires the use a heuristic optimization scheme and, as shown in this
report, this task is not straightforward when the differences in the fitness
function are masked by the stochasticity of the algorithm. However,
when more than one parameter is changed the evaluation of the fitness
function may have a larger variation for different parameters and new
optimum solutions may be found. The main issue when implementing
this optimization for parameters used in early stages of the biomarker
retrieval algorithm is the slow speed of the 10 executions of RGIFE, that
would need to be distributed among different cores to make the optimi-
zation feasible.

The fitness function should also be modified since the GO terms may
not be correctly assigned for poorly characterised genes. A new fitness
function would take into account the topography of the GRN as a meas-
urement of the proximity of the biomarker to predefined stress nodes
such as lexA, fur, perR, ohrR and cymR for oxidative stress. Furthermore,
the GRN can be enriched converting it into a PFIN (Probability Func-
tional Integrative Network). PFINs weight the interaction between two
genes according to the evidence gathered from several genetic, biochem-
ical and computational experiments, providing a probabilistic measure of
the likelihood of an interaction (Lee, et al., 2004). Although contrast of
hypothesis and machine learning are striking different methodologies, as
shown when comparing the results of Student’s t-test and the ranking of
biomarkers (Table 4 and 5), another improvement of the fitness function
would include the p-values derived from a contrast of hypothesis as a
measurement of the likelihood of a biomarker being a true positive.

As far as the genetic circuit is concerned, a continuous simulation is
needed to check if the dynamic ranges of response of the TetR repressors
are compatible with the functionality of the circuit. Different repressors
trigger different levels of expression when they are on or off and it may
occur that the off state of a repressor is enough to inhibit the expression

of the next element in the circuit. The dynamic ranges of the TetR re-
pressors had been maximised modifying the RBSs that control their
expression, so that the difference of expression between on and off states
is maximum (Stanton, et al., 2014). The same RBSs have been used in
this work, and the response function of each repressor together with the
expression profile of the biomarkers with and without stress should be
used to find the best distribution of repressors among logic gates. Once
the genetic circuit has been tried in silico, it has to be tested in vivo. For
that purpose, it will be split in fragments that will be included in different
commercial integrative plasmids to be synthesized using overlapping
oligonucleotides.

4.3. Conclusions

This work describes a simple and versatile stress-specific biomarker
retrieval algorithm. This pipeline can be applied to several biological
quantitative measures in different organisms and non-stress scenarios
such as differences in communities of bacteria using metagenomic ex-
periments or biomarkers determinant of clinical conditions harnessing
quantitative proteomics. Furthermore, to my knowledge, this work is
pioneer in coupling machine learning to the design of a synthetic circuit
able to dynamically adjust a cellular response.
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