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1 Introduction

Le stage a eu lieu au LRI, dans le département bio-informatique, et était
encadré par Stefan Haar (du LSV, & Cachan) et Loic Paulevé (LRI).

Dans le contexte de la médecine régénérative, une des méthodes, en plein
essor, pour traiter les patients, est la reprogrammation cellulaire, permettant
de régénérer, par exemple, muscles ou neurones. De telles opérations sont de-
venues réalistes apres que des expériences aient prouvées qu’un partie de la
différentiation cellulaire peut étre inversée[I4]. Pendant leur développement, les
cellules passent par plusieurs étapes ou elles sont encore multipotentes, puis at-
teignent un état différentié. Ce processus peut étre inversé, créant ainsi des cel-
lules souches pluripotentes induites (iPSCs) depuis une cellule déja différentiée.
En forcant la cellule a se différentier autrement, cela permet de ”transformer”
le phénotype d’une cellule. Alternativement, il est également possible de di-
rectement ”trans-différencier” une cellule sans passer par un état pluripotent
intermédiaire([8] [6].

Dans la suite de ce rapport, la de-différentiation comme la trans-différentiation
sont effectuées en ciblant certains genes, appelés Déterminants de Reprogram-
mation (RDs), via 'usage de leurs facteurs de transcription [I4 [].

La prédiction automatisée des RDs nécessite de prendre en compte de nom-
breuses facettes de la dynamique cellulaire et de la stratégie de reprogram-
mation, telles que le type de perturbations (permanentes ou temporaires) et
leur impact ; leur ordre; la nature du phénotype cellulaire voulu (pluripotent
ou différentié) ; le niveau d’inévitabilité voulue dans I’accessibilité de la cible
(fidélité) ; la nature et durée de la cascade de régulations engendrée (efficacité) ;
et également la robustesse des RDs vis a vis de I’hétérogénéité initiale au sein
de la culture cellulaire, et en considérant les possibles incertitudes du modele
computationnel.

Actuellement, aucune méthode ne permet de satisfaire tous ces aspects afin
de prédire systématiquement la meilleure combinaison de RD pour des repro-
grammations cellulaires différentes.

Dans ce rapport, nous résolvons 'identification des RDs des Réseauz Booléens,
qui modélisent les dynamiques des régulations géniques et des réseaux de signali-
sation. Les composants (les nceuds) du réseau sont représentés par des variables
booléennes, et le changement d’état est décrit par des fonctions booléennes qui
donnent le futur état des nceuds suivant 'état de leurs régulateurs|I5] [I]. Les
réseaux booléens sont adaptés pour une recherche algorithmique sur de vastes
réseaux biologiques, ou les connaissances sont majoritairement sur l’activation
et I'inhibition entre les divers composants. De telles activations et inhibitions
entre les composants forment un graphe orienté signé, appelé Graphe d’Interac-
tion (IG).

Dans ces travaux, nous avons supposé que les états cellulaires différentiés
correspondent aux attracteurs de la dynamique du modele, i.e. les comporte-
ments sur le long terme. Dans le cadre des réseaux booléens, ces attracteurs
peuvent étre soit un unique état (un point fixe) ou un comportement de cycle
terminal.



Les relations entre le graphe d’ interaction d’un réseau booléen et le nombre
d’attracteurs ont déja été bien étudiées[I], 12] I3]. Par contre, il n’existe actuel-
lement que peu de travaux sur les caractérisations des perturbations qui per-
mettraient de déclencher le passage a un attracteur, ou de changer d’attracteur.
Actuellement, la majorité des prédictions de RDs sont faites soit en utilisant
une analyse statistique sur les données d’expression, pour classer les facteurs de
transcription par ordre d’importance[2, [I11 [@]. Bien que basées sur des modeles
de réseaux, ces approches ne permettent pas d’obtenir un ensemble complet de
solutions pour le probleme de la reprogrammation cellulaire. Il existe également
une heuristique pour trouver des RDs candidats depuis une analyse purement
topologique du graphe d’interaction[5] : les RDs sont choisis uniquement dans
les cycles positifs qui prennent une valeur différente entre le point fixe d’origine
et celui d’arrivée. Cependant, il n’y a aucune garantie que les RDs trouvés per-
mettent effectivement un changement d’attracteur dans les réseaux booléens, ni
que le point fixe voulu est le seul atteignable. Finalement, on peut trouver une
caractérisation formelle des RDs permettant d’entrainer un changement d’at-
tracteur quand ils sont modifiés temporairement, dans le cas de la dynamique
synchrone des réseaux booléens conjonctifs[7].

Contribution

A partir d’un réseau booléen dont tous les attracteurs sont des points fixes,
et étant donnés un point fixe initial et un point fixe cible, il est possible de donner
une caractérisation des RDs potentiels (un ensemble de noeuds) en utilisant le
graphe d’interaction et pour deux possibilités de reprogrammation cellulaire :

— soit avec une perturbation permanente des RDs, pour que le point fixe

cible devienne atteignable dans la dynamique asynchrone du réseau booléen

— soit avec une perturbation permanente, pour que le point fixe cible de-

vienne le seul attracteur atteignable dans la dynamique asynchrone du
réseau booléen

Dans le premier cas, j’ai prouvé que tous les RDs sont uniquement dans cer-
taines composantes fortement connexes du graphe d’interaction, et j’ai trouvé
des algorithmes pour trouver ces RDs dans les deux cas. Dans le second cas, j’ai
prouvé que seulement certains d’entre eux sont dans les composantes fortement
connexes mentionnées précédemment. J’ai développé un algorithme pour obtenir
les combinaisons possibles de perturbations permanentes permettant ’atteinte
inévitable (i.e. le point fixe cible étant le seul point fixe atteignable). Cet al-
gorithme peut rater certaines solutions, mais toutes les solutions données sont
correctes.

Notations

Soit un ensemble fini I, 2! est I’ensemble des parties de I, |I| est le cardinal
de I. Soit n un entier naturel, on définit [n] = {1,...,n}.

Soit un état booléenz € {0,1}" et un ensemble d’indices I C [n], #1 est
I'état ot #;7 = x; sii ¢ I et 2,/ =1 —x; si i € I. De la méme maniere, si on



ax,y €1{0,1}", 2[5,—,, est I'état olt, pour tout i € I, (x[5,—y,))i = ¥ et pour
tout @ & I, (Tip,=y,])i = Ti

2 Contexte

Cette section permet de définir formellement les réseaux booléens, leur graphe
d’interaction, et leur graphe de transition dans la dynamique asynchrone. Elle
permet aussi de rappeler des propriétés indispensables a la compréhension de
I’algorithme.

2.1 Définitions

Réseau booléen : Un réseau booléen est un ensemble fini de variables booléennes,
chacune ayant une fonction booléenne. Cette fonction booléenne est une fonc-
tion logique qui dépend des variables du réseau et permet de déterminer I’état
futur de la variable.

Définition 1 (Réseau booléen). Un réseau booléen de taille n est un ensemble
de variables {z1,...,z,} et une fonction f telle que :

I {0,1}" — {0,1}"
T = (1,00, Tn) f(.%‘) = (f1($)>7fn<33))

Ezemple 1. Un exemple de réseau booléen de dimension 3 (n = 3) :

fi(z) =23V (-21 A o)
fg(.’lﬁ) =z V Iy
fa(x) = x5 V (1 A —x2)

Graphe d’interaction : Pour déterminer les RDs, il faut simplifier les inter-
actions entre les genes et les concentrations requises. Un gene est considéré soit
comme actif, soit comme inhibé. Les interactions sont simplifiées de la méme
maniere : un gene inhibe ou active un autre geéne, et les échelles de temps sont
ignorées. Un graphe d’interaction (Déf peut étre construit a partir de ces sim-
plifications, les génes sont les sommets, les interactions sont les arcs orientés,
marqués + ou — suivant si 'interaction est une activation ou une inhibition.

Définition 2 (Graphe d’interaction). Un graphe d’interaction G = (V, E)
consiste en V' l'ensemble des sommets, et E C (V x V x {—,+}) l'ensemble
des arétes.



Un circuit dans un ensemble de nceuds C' C V est dit positif (resp. négatif)
si et seulement si il contient un nombre pair (resp. impair) d’arétes négatives
entre ces nceuds.

Un graphe d’interaction peut également étre définit comme une abstraction
d’un réseau booléen : les fonctions ne sont pas données et pas forcément connues,
mais si un sommet u est utilisé dans la fonction f, alors il y a une aréte de u
vers v, signée négativement si f, contient -z, et positivement si f, contient x,,.

Définition 3 (Graphe d’interaction d'un réseau booléen (G(f))). Un graphe
d’interaction peut étre obtenu & partir d’un réseau booléen f : I’ensemble des
sommets est [n], et pour tout u,v € [n], il y a une aréte positive (resp. négative)
de u vers v si fy,(z) est positive (resp. négative) pour au moins un x €
{0,1}" (pour tout u,v € [n], la fonction f,, est la dérivée discrete de f, par
rapport a w, définie sur {0,1}"™ par fou(z) = fo(@1, . Tu—1, 1, Tus1, s Tn) —
fv(xla vy Ly—1, 0; Tyt1y ey mn))

Etant donné un graphe d’interaction G = (V, E) et un de ses sommets u € V|
on note P, ’ensemble des ancétres de u, i.e. les sommets v tels qu’il existe un
chemin dans F de uv a u. De la méme maniere, p, est ’ensemble des parents
de u, i.e. v € py = (v,u,s) € E. De plus, G[P,] est le sous-graphe induit de G
avec P, comme ensemble de sommets.

Fig. [1] donne un exemple de graphe d’interaction, qui est égal & G(f), ou f
est le réseau booléen de I'exemple [T]

FIGURE 1 — Graphe d’interaction d’Ex/[I]
Une fleche bleue indique une activation, une fleche aplatie rouge indique une
inhibition.

Graphe de Transition : Il est possible de modéliser la dynamique dun
réseau booléen f & l'aide de transitions entre ses états x € {0,1}". Dans l'en-
semble de ce papier, nous considérons la sémantique asynchrone des réseaux
booléens : une transition met a jour seulement la valeur d’un unique sommet
u € [n]. Depuis un état = € {0,1}", il existe plusieurs transitions pour chaque
neeud u tel que f,(x) # x,. Cela permet de définir un graphe de transition
(Déf ou les sommets sont les états possibles {0, 1}™ et les arétes correspondent
aux transitions asynchrones.



Définition 4 (Graphe de Transition). Le graphe de transition est le graphe
ayant {0,1}" comme ensemble de sommets et I'ensemble {z — z{*} | 2 ¢
{0,1}™,u € [n],zy, # (f(x))n} comme I’ensemble des arétes. Un chemin existant
de = vers y est noté x —* y.

Fig[2] donne le graphe de transition en dynamique asynchrone du réseau
booléen de 'exemple

(011 |—[ 111

— ‘
010 110

~_ —

T 001 |—| 101

[000J—{100]

FIGURE 2 — Graphe de transition du réseau booléen défini dans Ex[I] J'utiliserai
des notations simplifiées, 010 étant la notation pour quand le sommet 1 a pour
valeur 0, le sommet 2 vaut 1, et le sommet 3 vaut 0. Les attracteurs sont encadrés
en magenta.

Attracteurs, Points Fixes Les attracteurs d’un réseau booléen sont les com-
posantes fortement connexes terminales du graphe de transition, et donc les dy-
namiques a long terme du systéme. La terminologie est différente si I’ensemble
des noeuds de la composante contient plusieurs éléments, alors le systeme oscille
entre plusieurs états (c’est un attracteur cyclique) ou un unique sommet (point

fize).
Définition 5 (Attracteur).

S C {0,1}" est un attracteur < S # () (1)
et Ve e S, Vy € {0,1}"\ S,z Ay (2)
et Vo € S, S\ z ne vérifie pas (2)  (3)

Si |S] =1 alors S est un point fixe. Sinon, S est un attracteur cyclique.

Soit f un réseau booléen, FP(f) C {0,1}"™ est 'ensemble de ses points fixes
(Vo € FP(f), f(z) = x).

Ezemple 2. Le réseau booléen de '’exemple|l|a 3 attracteurs, qui correspondent
aux trois composantes fortement connexes terminales, encadrées en magenta,
dans Fig]: {010,110} (attracteur cyclique), {101} et {111} (points fixes).



2.2 Lien entre attracteurs et graphe d’interaction

Le théoréme [1| est une conjecture de René Thomas [I5] qui a depuis été
prouvé pour les réseaux booléens et discrets [IL [10] : si un réseau booléen a plu-
sieurs attracteurs, alors son graphe d’interaction contient forcément un circuit
positif. Dans le cas ou plusieurs attracteurs sont des points fixes, toute paire de
points fixes prennent des valeurs différentes sur au moins un ensemble de nceuds
formant un circuit positif.

Théoreme 1. Si G = (V, E) n'a aucun circuit positif, alors f a au plus un
attracteur. De plus, si f a deuz points fizes distincts x et y, alors G a un circuit
positif C C 'V tel que, pour tout sommet v de C, on a x, # Y.

Il est également possible de remarquer que pour qu’un sommet v conserve sa
valeur y,, ou y est un point fixe, il est suffisant que ses ancétres aient la méme
valeur que dans y.

Remarque. Yy € FP(f), Vu € [n|,Vz € {0,1}", z verifiant Vj € P,, z; =
Yj, on a fu(y) =Yu = fu(z)

Démonstration. Soit v un sommet de [n]. f(u) dépend uniquement des arétes
entrantes, donc uniquement de p,. L’ensemble des sommets de p, dépendent
également uniquement de leurs parents, donc, par récurrence, f,(y) dépend
uniquement de P,. On en déduit que si f,(y) = y, dans G, alors f,(y) = yu
dans G[P,] O



3 Formalisation de la reprogrammation de réseaux
booléens avec des perturbations permanentes

Soient = et y deux points fixes du réseau booléen f, je veux trouver un
ensemble de nceuds, les déterminants de reprogrammation (RDs), qui, quand
modifiés dans xz, permettent de passer & y. Dans ce rapport, "modifier” veut dire
imposer de maniére permanente une valeur au nceud. Si 'on modifie u a la valeur
1 (resp. 0) alors on a f,(x) = 1 (resp. 0) pour tout z. Quand atteindre y (en
changeant un ensemble T) est possible, deux cas de figure sont envisageables :
soit y est atteignable depuis w[,,—,,] (atteinte existentielle, Def@, soit y est
I'unique point fixe atteignable depuis x[,,—,,) (atteinte inévitable, Def@. Jai
étudié les deux approches.

Définition 6 (Atteinte existentielle). A partir du réseau booléen F'; une fonc-

tion FRp peut étre définie dans 22["]7 avec ERp(x,y) — v oll v est Pensemble
de tous les ensemble minimaux de sommets I tels que @[, —,,) =" y.

Définition 7 (Atteinte inévitable). De la méme maniere, une fonction IRp :

221" peut étre définie par I Rp(z,y) — v ol v est U'ensemble de tous les ensemble
minimaux de sommets I tels que Vz € {0,1}", Ty, —y,] =" 2 = 2 =" ¥.

’ x fonctions donneront des résultats différents, comme montré dans
I’exemple ci-dessous.

Ezemple 3. Soit f le réseau booléen de la Fig[j et dont le graphe de transition
est visualisé dans la Fig f a quatre points fixes (en rouge) : 0000, 0001, 1100
et 1101. On pose z = 0000 et y = 1100. Fixer la valeur du noeud {1} a 1
dans 2 rend y atteignable : 1100 (=y) est atteignable depuis x[,,—1; = 1000
dans le réseau booléen f’ défini par f{(z) =1 et f5 = fo, f5 = f3, f1 = fa. Le
graphe de transition de f’ correspond & la partie gauche du graphe de transition
de la Fig[dl On peut cependant remarquer que y n’est pas l'unique point fixe
atteignable : depuis 1000, 1101 est également atteignable. En fixant le nceud {4}
a 0, y devient I'unique point fixe atteignable depuis x[,,—; »,—0] dans le réseau
booléen f” tel que f{'(x) =1, fi = fa, f§ = f3, et fi/(x) =0.

Donc, avec les définitions précédentes, on a {1} € ERp(0000,1100) mais
{1} ¢ IRr(0000,1100);et {1,4} € IRF(0000,1100) mais {1,4} ¢ ERr(0000,1100).
De plus, on a également {1,2} et {1,3} € IRp(0000,1100).



0
@

fi(z) =21 7N\
fo(x) = 21 B—0@
fg(l‘) =1 /\_\I’g l
fa(x) =23V 2y @

U

FIGURE 3 — Un réseau booléen de dimension 4

1011 - 1111 0011 « 0111
1001 — 1101 \ 0001 « 0101 \
1010 — 1110 0010 « 0110

. ||

z11} = 1000 —| 1100 0000 < 0100
Y ;

X

FIGURE 4 — Graphe de transition du réseau booléen de la Figf3]
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4 Déterminants de reprogrammation et Compo-
santes fortement connexes (SCC) du graphe
d’interaction

Dans cette section, je vais parler du lien entre les RDs et les SCCs du graphe
d’interaction du réseau booléen f. Les résultats sont basés sur I’hypothese que
tous les attracteurs de f sont des points fixes (pas d’attracteurs cycliques).

4.1 Trier les SCCs

Pour passer de x a y, on veut changer la valeur de chaque sommet u qui a
des valeurs différentes en x et y (x, # y.) et empécher chaque sommet v qui
vérifie x,, = y,, de changer de valeur. On sait que changer la valeur d’un sommet
va avoir un effet sur les valeurs des autres sommets (en prenant en compte la
dynamique) mais qu’'un sommet ne va également influer que ses descendants
(par construction du graphe d’interaction, Def.

J’en ai donc déduit que, si un sommet u a une valeur différente entre x et
y mais qu’aucun de ses ancétres ne change, alors il est nécessaire de modifier
ce sommet. Donc, la meilleure maniere de savoir quels sommets doivent étre
changés en premier est de les trier, avec un ordre topologique par exemple.
FNidemmem7 s'ill y a des boucles ou des circuits, un ordre est impossible a
déterminer, c’est pour ¢a qu’il est nécessaire de réduire tous les SCCs a de
simples ”super-sommets” afin de réussir ce tri. Dans la suite de ce rapport, j’ai
uniquement inclus les SCCs qui contiennent des circuits positifs, car ce sont
ceux qui changent entre les points fixes (Theor, et on appelle O I’ensemble
de tous ces SCCs. Réduire le graphe a ses SCCs permet de les ordonner de 1 a
k a I’aide de n’importe quel ordre topologique, noté < : pour tout ,j € [k],7 >

Soit Oy l'ensemble {O; € O | 39(93-, O; < O;}, qui définit la premiere
"tranche” de SCCs (ceux qui n’ont aucun parents),on peut définir récursivement
les tranches suivantes Cx = {O0; € (O\Ujeq1, x—13 C1) | 30;, 0; < O;}. Avec
cette définition de tranche, quelque soit ’ordre topologique, les tranches et leur
ordre seront les mémes. On indexe les tranches de 1 a c.

A partir de cet ordre, on sait quels SCCs doivent étre modifiés en premier,
mais ce n’est pas suffisant pour ne pas changer les SCCs placés plus bas dans
la hiérarchie (cf ex. La relation < ne donne qu’un ordre dans lequel modifier
les noeuds, duquel il est possible de déterminer si plus de modifications sont
nécessaires.

Ezemple 4. Preuve que l'ordre topologique uniquement n’est pas suffisant.

Tout algorithme qui n’utiliserait que ’ordre topologique sans aller plus loin
dans la recherche de points fixes atteignables ne suffirait pas, comme ’exemple
de la Figf le montre : la modification nécessaire & passer de 01100 & 10101
serait calculée comme étant uniquement le noeud {1} & modifier, mais {4} sera
toujours & 0, car {4} est toujours inhibé par {3}, donc {5} doit également étre
changgé.

11



xr1 'V X2 @—{@H@D
fa(x) =20 A H 7
2e) =1 Vs O__®

FIGURE 5 — Réseau booléen empéchant le changement dans le SCC le plus bas

4.2 Filtrer les SCCs

Pour que y soit 'unique point fixe ou pour qu’il soit seulement un des at-
tracteurs atteignables, I'ordre de la partie précédente sera le méme, mais filtrer
les SCCs sera différent.

Théoréme 2. Si un sommet u tel que x,, # y, et que u n’est pas dans un cycle
positif, alors modifier les ancétres de u est suffisant pour modifier u.

Plus généralement, pour passer de x a y, uniquement modifier les SCCs qui
contiennent au moins un circuit positif est suffisant.

Démonstration. Soit v un sommet tel que z,, # y, et u n’est pas dans un circuit
positif. Si u est dans un circuit négatif, ’arc entrant provenant du circuit négatif
n’influe pas sur u, car x et y sont des points fixes et que u a une valeur distincte
dans chacun. Comme u n’est pas dans un circuit positif, u n’est pas dans un
SCC de O (ou, si il est dans un circuit négatif dans un SCC de O, enlever I'arc
"inactif” entrant permet de l’en séparer). Donc aucun des ancétres de u n’est
également un de ses descendants. Soit z I’état out tous P, (tous les ancétre de u)
ont la méme valeur qu’en y. Par la remarque de la Sect pour tout v € G[P,],
on a f,(z) = z, = y,. Donc, soit f,(2) = yu, et le théoréme est prouvé, soit
fu(2) # y. et alors, par Theor u est dans un circuit positif, contradiction. [

Par récurrence sur la premiere partie, modifier tous les SCCs qui contiennent
des circuits positifs afin que leurs sommets prennent les mémes valeurs qu’en y
modifie tous leurs enfants, et leurs descendants, jusqu’a ce que tout le graphe
ait les mémes valeurs qu’en y. O

La sélection des SCCs est différente suivant le résultat voulu. Je m’appuie
sur les mémes bases, chercher le SCC le plus "haut” (avec le moins d’ancétres)
qui devrait avoir ses valeurs modifiées et qui n’est pas déja sélectionné.

Pour diviser le probleme, les algorithmes présentés vont sélectionner des
SCCs a modifier, et non des nceuds. C’est un autre algorithme dont je discuterai
plus tard. L’ensemble sélectionné de SCCs est noté S.

4.3 Filtrer les SCCs pour I’Atteinte existentielle

Cette partie explique un algorithme qui permet de trouver différents en-
sembles de SCCs qui permettent d’atteindre le point fixe cible, et donne aussi
certaines propriétés de cet algorithme (complétude et minimalité).
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Le principe de ’algorithme est de regarder de maniere linéaire les tranches
C; définies par <, et d’ajouter les combinaisons minimales de SCCs a S sont
différentes entre y et les points fixes atteignables depuis x|
1. §:=0
2. Pourtdelac:
— T:=0
— Vs € P(C;) tel que s minimal
Jdz € {Oll}nv ZCi\S = yC,‘,\sa x[an:yﬂ]es} —* Z, T:=TUs.
— §:=8xT.
Avec X défini comme un mélange de produit et d’union : soit un ensemble [

d’ensembles I, .., I et un ensemble J d’ensembles Ji,..,J;, ce produit X est
défini par : IxJ = {Il Udi, .., UJ, IbUJy, ..., I U Jl}

zs=ys]

Complexité Dans le pire des cas, 1’algorithme ci-dessus effectue ¢ x 2! tests
d’atteinte (PSPACE-complets, [4]) avec [ la taille de la plus grande tranche.

Existence d’une solution et preuve de correction En imposant a tous
les SCCs qui sont différents entre x et y, d’avoir la valeur qu’ils ont en y, on
a une solution (par Theor Dans le pire des cas, c’est la solution trouvée
par l'algorithme. Comme l’algorithme test I’atteinte possible, et qu'une solution
existe, il en trouvera une.

Ezemple 5. On applique l’algorithme au réseau booléen de Figf]avec z = 00000
et y = 11011.

C1
e ENOmN
fZ(x) =1 @}7@
fg(l') =X A\ -T2 l l
f4(1‘) =23V Xy C,
f5($) =xo Vx5 (]

FIGURE 6 — Réseau booléen de dimension 5 (& gauche) et son graphe d’inter-
action (& droite). Les tranches sont encadrées. C; = {{1}}, C2 = {{4},{5}}.

.S:=0
C; : s minimal & s = {1}

L S=8x{1} = {1}

C5 : s minimal & s = (Z)El

= o=

1. en prenant le chemin 10000 — 10100 — 10110 — 11110 — 11111 (et le point fixe est
l’état suivant, — 11011 mais lalgorithme n’a pas besoin d’aller plus loin que 11111.)
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5. §:=8x0={{1}}.

J’ai prouvé que cet algorithme est complet et que les ensembles de SCCs
renvoyés sont minimaux (dans le Theor[3) et que tout RD dans ER(z,y) est
nécessairement dans un des ensembles de SCCs identifiés par ’algorithme (Theor.

Théoréme 3. S ne contient que des ensembles minimaux d’ensembles de SCCs,
et S est complet

Démonstration. Minimalité : Dans chaque tranche, les SCCs sont indépendants
les uns des autres (par définition de la tranche). De plus, étant donné 'utilisa-
tion de 'ordre, on peut en déduire que la somme des minima sur chaque tranche
est le minimum sur tout le graphe. O

Complétude : Soit I un ensemble de SCCs minimal, tel que [, ,—y ;| 7er) =~
y. Alors, pour toute tranche C;, I N C; est minimal, car si on peut changer les
SCCs de maniéere a ce qu’ils soient tous avec les mémes valeurs qu’en y, on peut
toujours choisir de prendre le chemin (dans le graphe de transition) qui permet
ce changement. Donc, par définition de S, I € S. O

Théoréme 4. Ve € ER(z,y), 31 € S, Vu € ¢, Iscc € I, u € sce.

Démonstration. Soit ¢ un ensemble de sommets de ER(x,y)n et u un des som-
mets. Si u ¢ O alors ¢ n’est pas minimal, par Théor[2] Si pour tout I € S, u
est dans o € (O \ I) alors il existe un chemin tel que changer les ancétres de o
permet de changer o, et donc les ancétres doivent étre changés également, par
construction de I. Donc ¢\ u aurait le méme effet, et ¢ ne serait pas minimal.
Siu ¢ o alors il existe I € S et scc € I tel que u € sce. O

4.4 Filtrer les SCCs pour 'atteinte inévitable

Je donne ici l'algorithme qui permet de trouver les ensembles de SCCs qui
permettent 'atteinte inévitable du point fixe cible.

L’algorithme recherche tous les points fixes atteignables depuis x,,—,,|res
et trouve z, celui qui a le SCC le plus petit au sens de < tel que z possede
un sommet u ayant des valeurs différentes en z et y (2, # yu). Comme 'on
considere '’ensemble des points fixes atteignables, le z retourné sera toujours
le méme, permettant ainsi a l’algorithme d’étre déterministe. On ajoute z a S
jusqu’a ce que y soit le seul point fixe atteignable.

1. S:=10
2. Tant que 3z € FP(f), 2 # ¥, T[a;—y;|1e5] =~ 2
— §:=8U{0O;}, avec
1= minae{l,‘.,k}(a | dz e FP(f)7 20, 7é Yo, T|zr=y;|I€S] —* Z)
Si deux (ou plus) SCCs A et B ne sont pas dans le méme ordre si on prend
deux ordres topologiques différents, alors ils sont dans la méme tranche, et donc
n’ont pas d’influence I'un sur ’autre. Donc si ils doivent tous deux étre modifiés,

I'ordre de sélection de ’algorithme ne changera rien, et ils seront tous les deux
ajoutés a S.
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Existence d’une solution et preuve de correction Une solution est d’im-
poser a tous les SCCs du graphe d’interaction leur valeur en y. Comme il existe
une solution, que ’algorithme cherche si y est le seul point fixe, et que 'algo-
rithme suit 'ordre topologique, ’algorithme finit et renvoie une solution.

Complexité Chercher tous les points fixes atteignables est PSPACE-complet
[3]. On 'utilise & fois dans le pire des cas.

Ezemple 6. On applique le théoréme au réseau booléen de Figl7] avec 2 = 00000
et y = 11011. A partir de S := (), le seul point fixe atteignable est (0)00(0)(0) (les
SCCs de O sont entre parentheses). Le plus petit SCC o vérifiant [, 5—y4).0 7#
Yo est Op, donc & := P U {01} = {O1}. Les points fixes atteignables depuis
Ty, —y,|1es] = 10000 sont maintenant : (1)10(1)(1) et (1)10(0)(1). Le plus petit
SCC o vérifiant [, —y1.0 # Yo est O3. On pose § := SU Oz = {0y, 03} et
on a alors que le seul point fixe atteignable depuis z[,,—,;j1cs) = 10010 est
(1)10(1)(1) = y. L’algorithme s’arréte donc ici.

A
: O
1 @}7
|
@
U

O3

v
e
U

FIGURE 7 — Réseau booléen de dimension 5 (& gauche) et son graphe d’in-
teraction (a droite) sur lequel les SCCs contenant des cycles positifs (O) sont
encadrés.

Théoréme 5. S est minimal.

Démonstration. Si un ensemble S existe tel que S; a un cardinal plus faible
que S et que modifier S7 permet que y soit 'unique point fixe atteignable, alors
il est possible de réduire S; & un sous-ensemble de O. Soit s un SCC dans S\ Sy,
donc il existe un point fixe z tel que z; # y, et donc, par construction de S, z
est atteignable depuis = modifié par S;. O

Il est possible de remarquer que, contrairement au cas de 'atteinte exis-
tentielle, les RDs pour l'atteinte inévitable ne sont pas forcément dans des
SCCs contenant des circuits positifs. En effet, dans 'exemple [3] j’ai montré
que I Rp(z,y) peut utiliser des nceuds qui ne sont pas dans O (comme le nceud
{2} de la Figf3). On peut également remarquer que si un RD v n’est pas dans
un SCC contenant un cycle positif, alors z,, = y,.
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4.5 L’impossibilité d’enlever les tests d’accessibilité

Je me suis demandé si enlever les tests d’accessibilité est possible. Le principe
d’un algorithme serait sensiblement le méme, mais en comparant les points
modifiés a la liste de points fixes du réseau booléen. En simplifiant les SCCs en
super-noeuds avec de multiples états possibles (tous les états possibles dans les
points fixes), on aurait un automate ordonné assez simple et comparer les états
de cet automate aux points fixes simplifiés est trivial.

Cependant, cette méthode ne donne pas des résultats minimaux, comme le
montre I’exemple 7] ci-dessous.

Al
(D)4
|

flgﬂfg =z B
f2 T) = T2 N\ X3 N\ Ty

f3(.17) = T4 A —T9 /\
g 3) @

Nev/

U

Ezemple 7.

FIGURE 8 — Réseau booléen de dimension 4 (& gauche) et son graphe d’interac-
tion (& droite). Une simplification des SCCs et des arétes est également effectuée,
en noir, donnant deux SCCs A et B et leur ordre A < B.

Le réseau booléen de Fig[8| donne les points fixes suivants :

fplalblc|d]e
1:JO0[O0JO]1]1 fp [[a]blc|d]e
2:[0[0]1]0]1 Simplifiableen: A:| 0] 0 111
3:111]0]0]01O0 B O(1]2]1]2
4:1 110|000

On choisit * = a et y = d. On doit modifier {1} pour changer A. Avec
I’algorithme qui ne fait pas les tests d’accessibilités, on a d comme e qui sont des
points fixes existants, mais e n’est pas accessible & partir de Z'. Donc, changer
uniquement {1} est suffisant, mais 'algorithme sans tests d’accessibilités, on
trouverait qu’il faut changer A et B.

Conjecture :

Tout ensemble de SCCs renvoyé par cette méthode est un ensemble de S
auquel des éléments ont possiblement été ajoutés.
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5 Identifier les déterminants au sein des SCCs

J’ai prouvé que modifier tous les SCCs sélectionnés dans S permet de passer
de z & y, mais, pour réduire le nombre de genes sélectionnés (surtout dans le
cas ou les SCCs sont grandes), il est possible d’essayer de modifier uniquement
certains des sommets pour atteindre le méme résultat. Cependant, a cause de
Paspect dynamique, il est plutdt facile d’avoir des changements non voulus (ou
des changements voulus non prédits, dans le cas de Patteinte existentielle).

Une idée est de sélectionner le Feedback Vertex Set du SCC, I’ensemble
minimal de sommets tel que, privé de ces sommets, le SCC ne contient plus
aucun circuit positif. En modifiant les sommets de cet ensemble, tout cycle serait
effectivement détruit (car comme on change la fonction en fixant un sommet, on
supprime toutes les arrétes entrantes), et donc le seul point fixe atteignable serait
y (par Theor. Cependant, le probleme de la dynamique se pose encore, comme
le démontre I’exemple[8] De plus, cette méthode ne renvoie pas toute les solutions
(modifier {2} ou {3} dans l'ex[§| permet de modifier tout le SCC) et méme
peut ne pas renvoyer la meilleure solution (dans l’ex modifier uniquement {3}
permet & y d’étre le seul point fixe atteignable et de résoudre le probleme).

Exemple 8. Nlustration du probleme au sein d'un SCC en prenant en compte
la dynamique.

xr3 N\ "To /\@
: -

o A\ X1 N\ X3 K

FIGURE 9 — Réseau booléen de dimension 5 et son graphe d’interaction

Soient z = 10000 et y = 01100, et 01101 = z, qui sont tous trois des
points fixes. Supposons que 'on veut qu’ y soit 'unique point fixe atteignable.
L’algorithme trouve que si le premier SCC {1,2,3} est modifié, alors y est
l'unique point fixe atteignable. En modifiant le Feedback Vertex Set, {1}, mais
plutét que d’avoir le chemin 00000 — 00100 — 01100, on peut avoir

00000 — 01000 — 01010 — 01011 — 01111 — 01101

Ce qui permet & z d’étre atteignable en modifiant uniquement {1}, et qui
donc rend I’algorithme faux.

Pour résoudre le probleme, il est donc nécessaire, soit de trouver une méthode
de sélection des sommets qui empéche d’avoir des répercussion sur les descen-
dants en dehors du SCC (en s’intéressant particulierement aux sommets ayant
des arrétes sortantes du SCC par exemple), soit de transformer S en liste de
sommets et de chercher les sommets a modifier dans le SCC en tant qu’étape
intermédiaire dans les algorithmes précédents.
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En utilisant les résultats de la section précédente, j’ai un algorithme basique
qui permet de trouver un ensemble de RD qui garantit ’accessibilité inévitable
du point fixe cible. L’algorithme choisit récursivement un sommet u dans le
SCC le plus bas relativement a l'ordre < et modifie sa fonction pour qu’elle
vaille la constante y,. Le graphe d’interaction du réseau booléen résultant est le
sous-graphe du graphe d’interaction initial, mais ol toutes les arétes entrantes
vers u ont été supprimées. Donc le SCC O; est divisé dans le nouveau graphe.
Si nécessaire, un nouveau sommet peut étre choisi dans le SCC le plus faible :

RecursiveAlgorithm(f, rd) :

— Si 32 € FP(f), |z, y=y,q) —" 2 alors :
res =10
i = minae{l’”yk}(a | dz € FP(f)7 20, 75 YOus L[zr=y;|I€S] —* Z)
Pour tout u € O; :
— g:= [ avec gy := Yu
— res := resU RecursiveAlgorithm(g, rdx{u})
renvoyer res

— sinon :

— renvoyer rd

On peut remarquer que ’algorithme trouve toujours une solution : si le point
fixe cible n’est pas I'unique point fixe atteignable, alors il y a au moins un circuit
positif (et donc un SCC) qui a des valeurs différentes entre y et un des points
fixes atteignables (et sera donc choisi par Palgorithme).

Ezemple 9. Appliqué au réseau booléen de la Figld] avec z = 10000 et y =
01100, lalgorithme ci-dessus renvoie, par exemple, 'ensemble {2,5}. En effet,
{2} est dans O;. En fixant fo = 1, le nouveau graphe d’interaction a deux
SCCs contenant des cycles positifs : {1,3} et {5}. Depuis 1’état 11000, deux
points fixes sont atteignables dans ce nouveau réseau booléen, 01100 et 01101.
Comme le SCC {1, 3} a les mémes valeurs qu’en y dans ces deux points fixes, le
SCC sélectionné par l'algorithme est {5}. Apres, depuis 11001 le seul point fixe
accessible est .
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6 Méthodes

Afin d’implémenter un algorithme, quel que soit le langage de program-
mation utilisé, il est nécessaire de pouvoir calculer les composantes fortement
connexes et de pouvoir faire des tests d’atteinte. J’ai décidé d’écrire une version
moins aboutie de l'algorithme de recherche des RDs pour ’atteinte inévitable
en OCaml. Le code source est donné dans les fichiers joints.

Le calcul des composantes fortement connexes est fait en temps linéaire par
rapport au nombre de sommets du graphe, par la méthode de Tarjan, qui est
implémentée dans la bibliotheque de graphes en OCaml.

Pour ce qui est du calcul des points fixes atteignables a partir d’un état
(les tests d’atteinte), deux méthodes existent : calculer tous les points fixes
(probléeme NP-complet), puis vérifier lesquels de ces points sont atteignables en
utilisant des méthodes PSPACE-completes de model-checking ; ou alors calculer
directement la dynamique et en extraire les attracteurs ce qui est également
PSPACE-complet[3]. J’ai utilisé 'outil ”pint” de Loic Paulevé pour calculer les
points fixes atteignables.

Le code source en OCaml en annexe nécessite pint d’installé, ainsi quun
compilateur OCaml avec les bibliotheques Graph, Unix, Array, et List.
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7 Discussion

Ce rapport donne la premiere caractérisation formelle des déterminants de
reprogrammation pour passer d’un point fixe & un autre dans la dynamique
asynchrone d’un réseau booléen.

Dans le cas de la reprogrammation pour ’atteinte existentielle, j’ai prouvé
que tous les ensembles minimaux possibles de RDs sont dans certains SCCs
particuliers du graphe d’interaction, et j’ai donné un algorithme permettant de
déterminer cette exacte combinaison de noeuds. Cette caractérisation s’appuie
sur les vérifications de ’atteinte possible du point fixe cible.

Dans le cas de la reprogrammation pour 'atteinte inévitable, j’ai montré que
les RDs ne sont pas forcément dans ces SCCs particuliers. Cependant, 1’algo-
rithme donné garantit I’atteinte inévitable du point fixe en trouvant des RDs
dans ces SCCs. Cet algorithme se base sur I’énumération des points fixes.

J’ai également prouvé que les tests d’accessibilité sont indispensables pour
avoir un ensemble de SCCs (et donc par conséquent de RDs) minimal.

Une des limites majeures de ces algorithmes est donc les nombreux tests
d’atteinte qu’ils ont besoin d’effectuer. La poursuite de ce stage en doctorat
me permettra de me pencher sur la factorisation possible de ’exploration de la
dynamique des réseaux booléens.

Une autre variable & ne pas oublier est la limitation de ce travail aux chan-
gements permanents : quand un nceud est changé, il ne peut pas revenir a sa
valeur précédente et gardera donc sa nouvelle valeur de maniere permanente.
Etudier les mutations temporaires (ot le noeud reviendrait & sa fonction initiale
aprés un certain ”temps”) serait donc intéressant, mais également bien plus dif-
ficile, car il faut alors prendre en compte 'ordre des mutations, leur durée, et
les RDs ne seraient plus a priori uniquement dans les composantes fortement
connexes contenant des circuits positifs, comme c’était le cas pour les mutations
permanentes.

Une autre problématique est I’'ordonnancement des mutations, qui a un im-
pact a la fois pour les mutations permanentes et temporaires. L’exemple
donne une idée de I'importance de l'ordre des mutations et de la notion de
durée.

Ezemple 10. Sur le réseau booléen de la fig[I0] en choisissant = 0000 et
y = 1101, un algorithme qui ne prend pas en compte le temps est forcé de
modifier {1,2,4} si 'on cherche & avoir une atteinte inévitable. Cependant, si
Pon modifie {1} et que l'on attend ”suffisamment longtemps”, il suffit ensuite de
modifier uniquement {2}. ” Attendre suffisamment longtemps” dans ce contexte
est attendre que la succession d’états 1000 — 1010 — 1011 soit effectuée.
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FI1GURE 10 — Réseau booléen de dimension 4 et son graphe d’interaction
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8 Acquis du stage

Cette section rapporte mes acquis pendant le stage.

8.1 Méthodes de recherche

Tout au long du stage, I'objectif a été de trouver des théoréemes qui donne-
raient un lien entre les RDs et le graphe d’interaction. J’ai donc appris les bases
des techniques de recherche d’article, que ce soit trouver les articles constructifs
sur le sujet ou la lecture de ces articles. J’ai également appris les techniques sur
les résultats : la discussion de ceux qui sont possibles, de ceux intéressants, de
la preuve de ces résultats mais aussi comment trouver des contre-exemples.

8.2 Algorithmique et programmation

Comme je cherche a avoir une méthode algorithmique pour trouver les RDs,
j’al eu a me pencher sur ’écriture de programmes et le calcul de complexité.
Cela m’a permis de me perfectionner en OCaml, et également a chercher 1'opti-
misation des temps de calcul maximaux.

8.3 Réseau

Des conférences et ateliers ont eu lieu pendant mon stage, auxquels j’ai été
invité. Cela m’a permis de connaitre un peu plus les personnes qui travaillent
dans le cadre des réseaux booléens et des graphes d’interaction, et d’élargir ma
culture sur leurs usages.

8.4 Rédaction scientifique et présentation de résultats

En plus du rapport de stage, qui se présente sous une forme assez proche
de celle de 'article scientifique, j’ai également eu a rédiger un article pour la
conférence de Hybrid Systems Biology qui aura lieu en octobre. J’ai donc appris
a formater et a rédiger sous un style scientifique, ainsi que comment rédiger en
KTEX.

De plus, j’ai parfois eu & présenter mes résultats, ce qui m’a permis d’améliorer
mes performances de présentation orale, mais également de savoir introduire
mon sujet de maniére précise et concise et de développer des exemples pour
faciliter la compréhension.

8.5 Inscription dans le parcours professionnel

Je souhaite devenir enseignant-chercheur, donc ce stage m’a permis de com-
mencer la recherche.De plus, je prolonge ces recherchs en doctorat, ce qui me
permettra de pousser plus loin autant dans mes activités de recherche que dans
ma volonté d’enseigner.
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