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26 août 2016

1



Table des matières

1 Introduction 3

2 Contexte 5
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1 Introduction

Le stage a eu lieu au LRI, dans le département bio-informatique, et était
encadré par Stefan Haar (du LSV, à Cachan) et Löıc Paulevé (LRI).

Dans le contexte de la médecine régénérative, une des méthodes, en plein
essor, pour traiter les patients, est la reprogrammation cellulaire, permettant
de régénérer, par exemple, muscles ou neurones. De telles opérations sont de-
venues réalistes après que des expériences aient prouvées qu’un partie de la
différentiation cellulaire peut être inversée[14]. Pendant leur développement, les
cellules passent par plusieurs étapes où elles sont encore multipotentes, puis at-
teignent un état différentié. Ce processus peut être inversé, créant ainsi des cel-
lules souches pluripotentes induites (iPSCs) depuis une cellule déjà différentiée.
En forçant la cellule à se différentier autrement, cela permet de ”transformer”
le phénotype d’une cellule. Alternativement, il est également possible de di-
rectement ”trans-différencier” une cellule sans passer par un état pluripotent
intermédiaire[8, 6].

Dans la suite de ce rapport, la de-différentiation comme la trans-différentiation
sont effectuées en ciblant certains gènes, appelés Déterminants de Reprogram-
mation (RDs), via l’usage de leurs facteurs de transcription [14, 5].

La prédiction automatisée des RDs nécessite de prendre en compte de nom-
breuses facettes de la dynamique cellulaire et de la stratégie de reprogram-
mation, telles que le type de perturbations (permanentes ou temporaires) et
leur impact ; leur ordre ; la nature du phénotype cellulaire voulu (pluripotent
ou différentié) ; le niveau d’inévitabilité voulue dans l’accessibilité de la cible
(fidélité) ; la nature et durée de la cascade de régulations engendrée (efficacité) ;
et également la robustesse des RDs vis à vis de l’hétérogénéité initiale au sein
de la culture cellulaire, et en considérant les possibles incertitudes du modèle
computationnel.

Actuellement, aucune méthode ne permet de satisfaire tous ces aspects afin
de prédire systématiquement la meilleure combinaison de RD pour des repro-
grammations cellulaires différentes.

Dans ce rapport, nous résolvons l’identification des RDs des Réseaux Booléens,
qui modélisent les dynamiques des régulations géniques et des réseaux de signali-
sation. Les composants (les nœuds) du réseau sont représentés par des variables
booléennes, et le changement d’état est décrit par des fonctions booléennes qui
donnent le futur état des nœuds suivant l’état de leurs régulateurs[15, 1]. Les
réseaux booléens sont adaptés pour une recherche algorithmique sur de vastes
réseaux biologiques, où les connaissances sont majoritairement sur l’activation
et l’inhibition entre les divers composants. De telles activations et inhibitions
entre les composants forment un graphe orienté signé, appelé Graphe d’Interac-
tion (IG).

Dans ces travaux, nous avons supposé que les états cellulaires différentiés
correspondent aux attracteurs de la dynamique du modèle, i.e. les comporte-
ments sur le long terme. Dans le cadre des réseaux booléens, ces attracteurs
peuvent être soit un unique état (un point fixe) ou un comportement de cycle
terminal.
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Les relations entre le graphe d’ interaction d’un réseau booléen et le nombre
d’attracteurs ont déjà été bien étudiées[1, 12, 13]. Par contre, il n’existe actuel-
lement que peu de travaux sur les caractérisations des perturbations qui per-
mettraient de déclencher le passage à un attracteur, ou de changer d’attracteur.
Actuellement, la majorité des prédictions de RDs sont faites soit en utilisant
une analyse statistique sur les données d’expression, pour classer les facteurs de
transcription par ordre d’importance[2, 11, 9]. Bien que basées sur des modèles
de réseaux, ces approches ne permettent pas d’obtenir un ensemble complet de
solutions pour le problème de la reprogrammation cellulaire. Il existe également
une heuristique pour trouver des RDs candidats depuis une analyse purement
topologique du graphe d’interaction[5] : les RDs sont choisis uniquement dans
les cycles positifs qui prennent une valeur différente entre le point fixe d’origine
et celui d’arrivée. Cependant, il n’y a aucune garantie que les RDs trouvés per-
mettent effectivement un changement d’attracteur dans les réseaux booléens, ni
que le point fixe voulu est le seul atteignable. Finalement, on peut trouver une
caractérisation formelle des RDs permettant d’entrâıner un changement d’at-
tracteur quand ils sont modifiés temporairement, dans le cas de la dynamique
synchrone des réseaux booléens conjonctifs[7].

Contribution

. À partir d’un réseau booléen dont tous les attracteurs sont des points fixes,
et étant donnés un point fixe initial et un point fixe cible, il est possible de donner
une caractérisation des RDs potentiels (un ensemble de nœuds) en utilisant le
graphe d’interaction et pour deux possibilités de reprogrammation cellulaire :

— soit avec une perturbation permanente des RDs, pour que le point fixe
cible devienne atteignable dans la dynamique asynchrone du réseau booléen

— soit avec une perturbation permanente, pour que le point fixe cible de-
vienne le seul attracteur atteignable dans la dynamique asynchrone du
réseau booléen

Dans le premier cas, j’ai prouvé que tous les RDs sont uniquement dans cer-
taines composantes fortement connexes du graphe d’interaction, et j’ai trouvé
des algorithmes pour trouver ces RDs dans les deux cas. Dans le second cas, j’ai
prouvé que seulement certains d’entre eux sont dans les composantes fortement
connexes mentionnées précédemment. J’ai développé un algorithme pour obtenir
les combinaisons possibles de perturbations permanentes permettant l’atteinte
inévitable (i.e. le point fixe cible étant le seul point fixe atteignable). Cet al-
gorithme peut rater certaines solutions, mais toutes les solutions données sont
correctes.

Notations

Soit un ensemble fini I, 2I est l’ensemble des parties de I, |I| est le cardinal
de I. Soit n un entier naturel, on définit [n] = {1, . . . , n}.

Soit un état booléenx ∈ {0, 1}n et un ensemble d’indices I ⊂ [n], x̄I est
l’état où x̄i

I = xi si i /∈ I et x̄i
I = 1 − xi si i ∈ I. De la même manière, si on

4



a x, y ∈ {0, 1}n, x[xI=yI ] est l’état où, pour tout i ∈ I, (x[xI=yI ])i = yi et pour
tout i /∈ I, (x[xI=yI ])i = xi

2 Contexte

Cette section permet de définir formellement les réseaux booléens, leur graphe
d’interaction, et leur graphe de transition dans la dynamique asynchrone. Elle
permet aussi de rappeler des propriétés indispensables à la compréhension de
l’algorithme.

2.1 Définitions

Réseau booléen : Un réseau booléen est un ensemble fini de variables booléennes,
chacune ayant une fonction booléenne. Cette fonction booléenne est une fonc-
tion logique qui dépend des variables du réseau et permet de déterminer l’état
futur de la variable.

Définition 1 (Réseau booléen). Un réseau booléen de taille n est un ensemble
de variables {x1, . . . , xn} et une fonction f telle que :

f : {0, 1}n → {0, 1}n

x = (x1, ..., xn) 7→ f(x) = (f1(x), ..., fn(x))

Exemple 1. Un exemple de réseau booléen de dimension 3 (n = 3) :

f1(x) = x3 ∨ (¬x1 ∧ x2)

f2(x) = ¬x1 ∨ x2

f3(x) = x3 ∨ (x1 ∧ ¬x2)

Graphe d’interaction : Pour déterminer les RDs, il faut simplifier les inter-
actions entre les gènes et les concentrations requises. Un gène est considéré soit
comme actif, soit comme inhibé. Les interactions sont simplifiées de la même
manière : un gène inhibe ou active un autre gène, et les échelles de temps sont
ignorées. Un graphe d’interaction (Déf.2) peut être construit à partir de ces sim-
plifications, les gènes sont les sommets, les interactions sont les arcs orientés,
marqués + ou − suivant si l’interaction est une activation ou une inhibition.

Définition 2 (Graphe d’interaction). Un graphe d’interaction G = (V,E)
consiste en V l’ensemble des sommets, et E ⊂ (V × V × {−,+}) l’ensemble
des arêtes.
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Un circuit dans un ensemble de nœuds C ⊂ V est dit positif (resp. négatif)
si et seulement si il contient un nombre pair (resp. impair) d’arêtes négatives
entre ces nœuds.

Un graphe d’interaction peut également être définit comme une abstraction
d’un réseau booléen : les fonctions ne sont pas données et pas forcément connues,
mais si un sommet u est utilisé dans la fonction fv alors il y a une arête de u
vers v, signée négativement si fv contient ¬xu et positivement si fv contient xu.

Définition 3 (Graphe d’interaction d’un réseau booléen (G(f))). Un graphe
d’interaction peut être obtenu à partir d’un réseau booléen f : l’ensemble des
sommets est [n], et pour tout u, v ∈ [n], il y a une arête positive (resp. négative)
de u vers v si fvu(x) est positive (resp. négative) pour au moins un x ∈
{0, 1}n (pour tout u, v ∈ [n], la fonction fvu est la dérivée discrète de fv par
rapport à u, définie sur {0, 1}n par fvu(x) := fv(x1, .., xu−1, 1, xu+1, .., xn) −
fv(x1, .., xu−1, 0, xu+1, .., xn)).

Étant donné un graphe d’interaction G = (V,E) et un de ses sommets u ∈ V ,
on note Pu l’ensemble des ancêtres de u, i.e. les sommets v tels qu’il existe un
chemin dans E de uv à u. De la même manière, pu est l’ensemble des parents
de u, i.e. v ∈ pu ⇒ (v, u, s) ∈ E. De plus, G[Pu] est le sous-graphe induit de G
avec Pu comme ensemble de sommets.

Fig. 1 donne un exemple de graphe d’interaction, qui est égal à G(f), où f
est le réseau booléen de l’exemple 1.

2

1 3

−

−

+

+

+

−
+

+

Figure 1 – Graphe d’interaction d’Ex.1.
Une flèche bleue indique une activation, une flèche aplatie rouge indique une
inhibition.

Graphe de Transition : Il est possible de modéliser la dynamique d’un
réseau booléen f à l’aide de transitions entre ses états x ∈ {0, 1}n. Dans l’en-
semble de ce papier, nous considérons la sémantique asynchrone des réseaux
booléens : une transition met à jour seulement la valeur d’un unique sommet
u ∈ [n]. Depuis un état x ∈ {0, 1}n, il existe plusieurs transitions pour chaque
nœud u tel que fu(x) 6= xu. Cela permet de définir un graphe de transition
(Déf.4) où les sommets sont les états possibles {0, 1}n et les arêtes correspondent
aux transitions asynchrones.
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Définition 4 (Graphe de Transition). Le graphe de transition est le graphe
ayant {0, 1}n comme ensemble de sommets et l’ensemble {x → x̄{u} | x ∈
{0, 1}n, u ∈ [n], xu 6= (f(x))u} comme l’ensemble des arêtes. Un chemin existant
de x vers y est noté x→∗ y.

Fig.2 donne le graphe de transition en dynamique asynchrone du réseau
booléen de l’exemple 1.

000

010

100

110

001

011

101

111

Figure 2 – Graphe de transition du réseau booléen défini dans Ex.1. J’utiliserai
des notations simplifiées, 010 étant la notation pour quand le sommet 1 a pour
valeur 0, le sommet 2 vaut 1, et le sommet 3 vaut 0. Les attracteurs sont encadrés
en magenta.

Attracteurs, Points Fixes Les attracteurs d’un réseau booléen sont les com-
posantes fortement connexes terminales du graphe de transition, et donc les dy-
namiques à long terme du système. La terminologie est différente si l’ensemble
des nœuds de la composante contient plusieurs éléments, alors le système oscille
entre plusieurs états (c’est un attracteur cyclique) ou un unique sommet (point
fixe).

Définition 5 (Attracteur).

S ⊆ {0, 1}n est un attracteur⇔S 6= ∅ (1)

et ∀x ∈ S, ∀y ∈ {0, 1}n \ S, x 6→ y (2)

et ∀x ∈ S, S \ x ne vérifie pas (2) (3)

Si |S| = 1 alors S est un point fixe. Sinon, S est un attracteur cyclique.

Soit f un réseau booléen, FP(f) ⊆ {0, 1}n est l’ensemble de ses points fixes
(∀x ∈ FP(f), f(x) = x).

Exemple 2. Le réseau booléen de l’exemple 1 a 3 attracteurs, qui correspondent
aux trois composantes fortement connexes terminales, encadrées en magenta,
dans Fig.2 : {010, 110} (attracteur cyclique), {101} et {111} (points fixes).
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2.2 Lien entre attracteurs et graphe d’interaction

Le théorème 1 est une conjecture de René Thomas [15] qui a depuis été
prouvé pour les réseaux booléens et discrets [1, 10] : si un réseau booléen a plu-
sieurs attracteurs, alors son graphe d’interaction contient forcément un circuit
positif. Dans le cas où plusieurs attracteurs sont des points fixes, toute paire de
points fixes prennent des valeurs différentes sur au moins un ensemble de nœuds
formant un circuit positif.

Théorème 1. Si G = (V,E) n’a aucun circuit positif, alors f a au plus un
attracteur. De plus, si f a deux points fixes distincts x et y, alors G a un circuit
positif C ⊂ V tel que, pour tout sommet v de C, on a xv 6= yv.

Il est également possible de remarquer que pour qu’un sommet v conserve sa
valeur yv, où y est un point fixe, il est suffisant que ses ancêtres aient la même
valeur que dans y.

Remarque. ∀y ∈ FP(f), ∀u ∈ [n],∀z ∈ {0, 1}n, z verifiant ∀j ∈ Pu, zj =
yj , on a fu(y) = yu = fu(z).

Démonstration. Soit u un sommet de [n]. f(u) dépend uniquement des arêtes
entrantes, donc uniquement de pu. L’ensemble des sommets de pu dépendent
également uniquement de leurs parents, donc, par récurrence, fu(y) dépend
uniquement de Pu. On en déduit que si fu(y) = yu dans G, alors fu(y) = yu
dans G[Pu]
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3 Formalisation de la reprogrammation de réseaux
booléens avec des perturbations permanentes

Soient x et y deux points fixes du réseau booléen f , je veux trouver un
ensemble de nœuds, les déterminants de reprogrammation (RDs), qui, quand
modifiés dans x, permettent de passer à y. Dans ce rapport, ”modifier” veut dire
imposer de manière permanente une valeur au nœud. Si l’on modifie u à la valeur
1 (resp. 0) alors on a fu(x) = 1 (resp. 0) pour tout x. Quand atteindre y (en
changeant un ensemble I) est possible, deux cas de figure sont envisageables :
soit y est atteignable depuis x[xI=yI ] (atteinte existentielle, Def.6), soit y est
l’unique point fixe atteignable depuis x[xI=yI ] (atteinte inévitable, Def.7). J’ai
étudié les deux approches.

Définition 6 (Atteinte existentielle). A partir du réseau booléen F ; une fonc-

tion ERF peut être définie dans 22
[n]

, avec ERF (x, y) 7→ v où v est l’ensemble
de tous les ensemble minimaux de sommets I tels que x[xI=yI ] →∗ y.

Définition 7 (Atteinte inévitable). De la même manière, une fonction IRF :

22
[n]

peut être définie par IRF (x, y) 7→ v où v est l’ensemble de tous les ensemble
minimaux de sommets I tels que ∀z ∈ {0, 1}n, x[xI=yI ] →∗ z ⇒ z →∗ y.

C’est deux fonctions donneront des résultats différents, comme montré dans
l’exemple ci-dessous.

Exemple 3. Soit f le réseau booléen de la Fig.3 et dont le graphe de transition
est visualisé dans la Fig.4. f a quatre points fixes (en rouge) : 0000, 0001, 1100
et 1101. On pose x = 0000 et y = 1100. Fixer la valeur du noeud {1} a 1
dans x rend y atteignable : 1100 (=y) est atteignable depuis x[x1=1] = 1000
dans le réseau booléen f ′ défini par f ′1(x) = 1 et f ′2 = f2, f ′3 = f3, f ′4 = f4. Le
graphe de transition de f ′ correspond à la partie gauche du graphe de transition
de la Fig.4. On peut cependant remarquer que y n’est pas l’unique point fixe
atteignable : depuis 1000, 1101 est également atteignable. En fixant le nœud {4}
à 0, y devient l’unique point fixe atteignable depuis x[x1=1,x4=0] dans le réseau
booléen f ′′ tel que f ′′1 (x) = 1, f ′′2 = f2, f ′′3 = f3, et f ′′4 (x) = 0.

Donc, avec les définitions précédentes, on a {1} ∈ ERF (0000, 1100) mais
{1} /∈ IRF (0000, 1100) ; et {1, 4} ∈ IRF (0000, 1100) mais {1, 4} /∈ ERF (0000, 1100).
De plus, on a également {1, 2} et {1, 3} ∈ IRF (0000, 1100).
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f1(x) = x1

f2(x) = x1

f3(x) = x1 ∧ ¬x3

f4(x) = x3 ∨ x4

1

23

4

Figure 3 – Un réseau booléen de dimension 4

1010 1110

1000x̄{1} = 1100
y

1011 1111

1001 1101

0010

0000
x

0110

0100

0011 0111

0001 0101

Figure 4 – Graphe de transition du réseau booléen de la Fig.3
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4 Déterminants de reprogrammation et Compo-
santes fortement connexes (SCC) du graphe
d’interaction

Dans cette section, je vais parler du lien entre les RDs et les SCCs du graphe
d’interaction du réseau booléen f . Les résultats sont basés sur l’hypothèse que
tous les attracteurs de f sont des points fixes (pas d’attracteurs cycliques).

4.1 Trier les SCCs

Pour passer de x à y, on veut changer la valeur de chaque sommet u qui a
des valeurs différentes en x et y (xu 6= yu) et empêcher chaque sommet v qui
vérifie xv = yv de changer de valeur. On sait que changer la valeur d’un sommet
va avoir un effet sur les valeurs des autres sommets (en prenant en compte la
dynamique) mais qu’un sommet ne va également influer que ses descendants
(par construction du graphe d’interaction, Def.3).

J’en ai donc déduit que, si un sommet u a une valeur différente entre x et
y mais qu’aucun de ses ancêtres ne change, alors il est nécessaire de modifier
ce sommet. Donc, la meilleure manière de savoir quels sommets doivent être
changés en premier est de les trier, avec un ordre topologique par exemple.
Évidemment, s’il y a des boucles ou des circuits, un ordre est impossible à
déterminer, c’est pour ça qu’il est nécessaire de réduire tous les SCCs à de
simples ”super-sommets” afin de réussir ce tri. Dans la suite de ce rapport, j’ai
uniquement inclus les SCCs qui contiennent des circuits positifs, car ce sont
ceux qui changent entre les points fixes (Theor.1), et on appelle O l’ensemble
de tous ces SCCs. Réduire le graphe à ses SCCs permet de les ordonner de 1 à
k à l’aide de n’importe quel ordre topologique, noté ≺ : pour tout i, j ∈ [k], j >
i⇒ Oj 6≺ Oi.

Soit O0 l’ensemble {Oi ∈ O | @Oj , Oj ≺ Oi}, qui définit la première
”tranche” de SCCs (ceux qui n’ont aucun parents),on peut définir récursivement
les tranches suivantes CK = {Oi ∈ (O\

⋃
l∈{1,..,K−1} Cl) | @Oj , Oj ≺ Oi}. Avec

cette définition de tranche, quelque soit l’ordre topologique, les tranches et leur
ordre seront les mêmes. On indexe les tranches de 1 à c.

À partir de cet ordre, on sait quels SCCs doivent être modifiés en premier,
mais ce n’est pas suffisant pour ne pas changer les SCCs placés plus bas dans
la hiérarchie (cf ex.4). La relation ≺ ne donne qu’un ordre dans lequel modifier
les nœuds, duquel il est possible de déterminer si plus de modifications sont
nécessaires.

Exemple 4. Preuve que l’ordre topologique uniquement n’est pas suffisant.
Tout algorithme qui n’utiliserait que l’ordre topologique sans aller plus loin

dans la recherche de points fixes atteignables ne suffirait pas, comme l’exemple
de la Fig.5 le montre : la modification nécessaire à passer de 01100 à 10101
serait calculée comme étant uniquement le nœud {1} à modifier, mais {4} sera
toujours à 0, car {4} est toujours inhibé par {3}, donc {5} doit également être
changé.
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f1(x) = ¬x2

f2(x) = ¬x1

f3(x) = x1 ∨ x2

f4(x) = x2 ∧ ¬x3

f5(x) = x4 ∨ x5

3

1 2

4 5

Figure 5 – Réseau booléen empêchant le changement dans le SCC le plus bas

4.2 Filtrer les SCCs

Pour que y soit l’unique point fixe ou pour qu’il soit seulement un des at-
tracteurs atteignables, l’ordre de la partie précédente sera le même, mais filtrer
les SCCs sera différent.

Théorème 2. Si un sommet u tel que xu 6= yu et que u n’est pas dans un cycle
positif, alors modifier les ancêtres de u est suffisant pour modifier u.
Plus généralement, pour passer de x à y, uniquement modifier les SCCs qui
contiennent au moins un circuit positif est suffisant.

Démonstration. Soit u un sommet tel que xu 6= yu et u n’est pas dans un circuit
positif. Si u est dans un circuit négatif, l’arc entrant provenant du circuit négatif
n’influe pas sur u, car x et y sont des points fixes et que u a une valeur distincte
dans chacun. Comme u n’est pas dans un circuit positif, u n’est pas dans un
SCC de O (ou, si il est dans un circuit négatif dans un SCC de O, enlever l’arc
”inactif” entrant permet de l’en séparer). Donc aucun des ancêtres de u n’est
également un de ses descendants. Soit z l’état où tous Pu (tous les ancêtre de u)
ont la même valeur qu’en y. Par la remarque de la Sect.2.2, pour tout v ∈ G[Pu],
on a fv(z) = zv = yv. Donc, soit fu(z) = yu, et le théorème est prouvé, soit
fu(z) 6= yz et alors, par Theor.1, u est dans un circuit positif, contradiction.

Par récurrence sur la première partie, modifier tous les SCCs qui contiennent
des circuits positifs afin que leurs sommets prennent les mêmes valeurs qu’en y
modifie tous leurs enfants, et leurs descendants, jusqu’à ce que tout le graphe
ait les mêmes valeurs qu’en y.

La sélection des SCCs est différente suivant le résultat voulu. Je m’appuie
sur les mêmes bases, chercher le SCC le plus ”haut” (avec le moins d’ancêtres)
qui devrait avoir ses valeurs modifiées et qui n’est pas déjà sélectionné.

Pour diviser le problème, les algorithmes présentés vont sélectionner des
SCCs à modifier, et non des nœuds. C’est un autre algorithme dont je discuterai
plus tard. L’ensemble sélectionné de SCCs est noté S.

4.3 Filtrer les SCCs pour l’Atteinte existentielle

Cette partie explique un algorithme qui permet de trouver différents en-
sembles de SCCs qui permettent d’atteindre le point fixe cible, et donne aussi
certaines propriétés de cet algorithme (complétude et minimalité).
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Le principe de l’algorithme est de regarder de manière linéaire les tranches
Ci définies par ≺, et d’ajouter les combinaisons minimales de SCCs à S sont
différentes entre y et les points fixes atteignables depuis x[xS=yS ] :

1. S := ∅
2. Pour i de 1 à c :

— T := ∅
— ∀s ∈ P (Ci) tel que s minimal
∃z ∈ {0, 1}n, zCi\s = yCi\s, x[xI=yI |I∈S] →∗ z, T := T ∪ s.

— S := S×̄T .

Avec ×̄ défini comme un mélange de produit et d’union : soit un ensemble I
d’ensembles I1, .., Ik et un ensemble J d’ensembles J1, .., Jl, ce produit ×̄ est
défini par : I×̄J = {I1 ∪ J1, .., I1 ∪ Jl, I2 ∪ J1, ...., Ik ∪ Jl}

Complexité Dans le pire des cas, l’algorithme ci-dessus effectue c × 2l tests
d’atteinte (PSPACE-complets, [4]) avec l la taille de la plus grande tranche.

Existence d’une solution et preuve de correction En imposant à tous
les SCCs qui sont différents entre x et y, d’avoir la valeur qu’ils ont en y, on
a une solution (par Theor.2. Dans le pire des cas, c’est la solution trouvée
par l’algorithme. Comme l’algorithme test l’atteinte possible, et qu’une solution
existe, il en trouvera une.

Exemple 5. On applique l’algorithme au réseau booléen de Fig.6 avec x = 00000
et y = 11011.

f1(x) = x1

f2(x) = x1

f3(x) = x1 ∧ ¬x2

f4(x) = x3 ∨ x4

f5(x) = x2 ∨ x5

1

23

4 5

C1

C2

Figure 6 – Réseau booléen de dimension 5 (à gauche) et son graphe d’inter-
action (à droite). Les tranches sont encadrées. C1 = {{1}}, C2 = {{4}, {5}}.

1. S := ∅
2. C1 : s minimal ⇔ s = {1}
3. S := S×̄{1} = {{1}}
4. C2 : s minimal ⇔ s = ∅ 1

1. en prenant le chemin 10000 → 10100 → 10110 → 11110 → 11111 (et le point fixe est
l’état suivant, → 11011 mais l’algorithme n’a pas besoin d’aller plus loin que 11111.)
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5. S := S×̄∅ = {{1}}.
J’ai prouvé que cet algorithme est complet et que les ensembles de SCCs

renvoyés sont minimaux (dans le Theor.3) et que tout RD dans ER(x, y) est
nécessairement dans un des ensembles de SCCs identifiés par l’algorithme (Theor.4).

Théorème 3. S ne contient que des ensembles minimaux d’ensembles de SCCs,
et S est complet

Démonstration. Minimalité : Dans chaque tranche, les SCCs sont indépendants
les uns des autres (par définition de la tranche). De plus, étant donné l’utilisa-
tion de l’ordre, on peut en déduire que la somme des minima sur chaque tranche
est le minimum sur tout le graphe.

Complétude : Soit I un ensemble de SCCs minimal, tel que x[xJ=yJ |J∈I] →∗
y. Alors, pour toute tranche Ci, I ∩ Ci est minimal, car si on peut changer les
SCCs de manière à ce qu’ils soient tous avec les mêmes valeurs qu’en y, on peut
toujours choisir de prendre le chemin (dans le graphe de transition) qui permet
ce changement. Donc, par définition de S, I ∈ S.

Théorème 4. ∀c ∈ ER(x, y), ∃I ∈ S, ∀u ∈ c, ∃scc ∈ I, u ∈ scc.

Démonstration. Soit c un ensemble de sommets de ER(x, y)n et u un des som-
mets. Si u 6∈ O alors c n’est pas minimal, par Théor.2. Si pour tout I ∈ S, u
est dans o ∈ (O \ I) alors il existe un chemin tel que changer les ancêtres de o
permet de changer o, et donc les ancêtres doivent être changés également, par
construction de I. Donc c \ u aurait le même effet, et c ne serait pas minimal.
Si u 6∈ o alors il existe I ∈ S et scc ∈ I tel que u ∈ scc.

4.4 Filtrer les SCCs pour l’atteinte inévitable

Je donne ici l’algorithme qui permet de trouver les ensembles de SCCs qui
permettent l’atteinte inévitable du point fixe cible.

L’algorithme recherche tous les points fixes atteignables depuis xxI=yI |I∈S
et trouve z, celui qui a le SCC le plus petit au sens de ≺ tel que z possède
un sommet u ayant des valeurs différentes en z et y (zu 6= yu). Comme l’on
considère l’ensemble des points fixes atteignables, le z retourné sera toujours
le même, permettant ainsi à l’algorithme d’être déterministe. On ajoute z à S
jusqu’à ce que y soit le seul point fixe atteignable.

1. S := ∅
2. Tant que ∃z ∈ FP(f), z 6= y, x[xI=yI |I∈S] →∗ z

— S := S ∪ {Oi}, avec
i = mina∈{1,..,k}(a | ∃z ∈ FP(f), zOa 6= yOa , x[xI=yI |I∈S] →∗ z)

Si deux (ou plus) SCCs A et B ne sont pas dans le même ordre si on prend
deux ordres topologiques différents, alors ils sont dans la même tranche, et donc
n’ont pas d’influence l’un sur l’autre. Donc si ils doivent tous deux être modifiés,
l’ordre de sélection de l’algorithme ne changera rien, et ils seront tous les deux
ajoutés à S.
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Existence d’une solution et preuve de correction Une solution est d’im-
poser à tous les SCCs du graphe d’interaction leur valeur en y. Comme il existe
une solution, que l’algorithme cherche si y est le seul point fixe, et que l’algo-
rithme suit l’ordre topologique, l’algorithme finit et renvoie une solution.

Complexité Chercher tous les points fixes atteignables est PSPACE-complet
[3]. On l’utilise k fois dans le pire des cas.

Exemple 6. On applique le théorème au réseau booléen de Fig.7. avec x = 00000
et y = 11011. À partir de S := ∅, le seul point fixe atteignable est (0)00(0)(0) (les
SCCs de O sont entre parenthèses). Le plus petit SCC o vérifiant x[xS=yS ],o 6=
yo est O1, donc S := ∅ ∪ {O1} = {O1}. Les points fixes atteignables depuis
x[xI=yI |I∈S] = 10000 sont maintenant : (1)10(1)(1) et (1)10(0)(1). Le plus petit
SCC o vérifiant x[xS=yS ],o 6= yo est O3. On pose S := S ∪ O3 = {O1,O3} et
on a alors que le seul point fixe atteignable depuis x[xI=yI |I∈S] = 10010 est
(1)10(1)(1) = y. L’algorithme s’arrête donc ici.

f1(x) = x1

f2(x) = x1

f3(x) = x1 ∧ ¬x2

f4(x) = x3 ∨ x4

f5(x) = x2 ∨ x5

1

23

4 5

O1

O3 O2

Figure 7 – Réseau booléen de dimension 5 (à gauche) et son graphe d’in-
teraction (à droite) sur lequel les SCCs contenant des cycles positifs (O) sont
encadrés.

Théorème 5. S est minimal.

Démonstration. Si un ensemble S1 existe tel que S1 a un cardinal plus faible
que S et que modifier S1 permet que y soit l’unique point fixe atteignable, alors
il est possible de réduire S1 à un sous-ensemble de O. Soit s un SCC dans S \S1,
donc il existe un point fixe z tel que zs 6= ys et donc, par construction de S, z
est atteignable depuis x modifié par S1.

Il est possible de remarquer que, contrairement au cas de l’atteinte exis-
tentielle, les RDs pour l’atteinte inévitable ne sont pas forcément dans des
SCCs contenant des circuits positifs. En effet, dans l’exemple 3, j’ai montré
que IRF (x, y) peut utiliser des nœuds qui ne sont pas dans O (comme le nœud
{2} de la Fig.3). On peut également remarquer que si un RD v n’est pas dans
un SCC contenant un cycle positif, alors xv = yv.
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4.5 L’impossibilité d’enlever les tests d’accessibilité

Je me suis demandé si enlever les tests d’accessibilité est possible. Le principe
d’un algorithme serait sensiblement le même, mais en comparant les points
modifiés à la liste de points fixes du réseau booléen. En simplifiant les SCCs en
super-nœuds avec de multiples états possibles (tous les états possibles dans les
points fixes), on aurait un automate ordonné assez simple et comparer les états
de cet automate aux points fixes simplifiés est trivial.

Cependant, cette méthode ne donne pas des résultats minimaux, comme le
montre l’exemple 7 ci-dessous.

Exemple 7.

f1(x) = x1

f2(x) = x2 ∧ ¬x3 ∧ ¬x4

f3(x) = x4 ∧ ¬x2

f4(x) = x3 ∧ ¬x2

1

2

3 4

A

B

Figure 8 – Réseau booléen de dimension 4 (à gauche) et son graphe d’interac-
tion (à droite). Une simplification des SCCs et des arêtes est également effectuée,
en noir, donnant deux SCCs A et B et leur ordre A ≺ B.

Le réseau booléen de Fig.8 donne les points fixes suivants :

fp a b c d e

1 : 0 0 0 1 1
2 : 0 0 1 0 1
3 : 1 0 0 0 0
4 : 1 0 0 0 0

Simplifiable en :

fp a b c d e

A : 0 0 0 1 1
B : 0 1 2 1 2

On choisit x = a et y = d. On doit modifier {1} pour changer A. Avec
l’algorithme qui ne fait pas les tests d’accessibilités, on a d comme e qui sont des
points fixes existants, mais e n’est pas accessible à partir de x̄1. Donc, changer
uniquement {1} est suffisant, mais l’algorithme sans tests d’accessibilités, on
trouverait qu’il faut changer A et B.

Conjecture :

Tout ensemble de SCCs renvoyé par cette méthode est un ensemble de S
auquel des éléments ont possiblement été ajoutés.
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5 Identifier les déterminants au sein des SCCs

J’ai prouvé que modifier tous les SCCs sélectionnés dans S permet de passer
de x à y, mais, pour réduire le nombre de gènes sélectionnés (surtout dans le
cas où les SCCs sont grandes), il est possible d’essayer de modifier uniquement
certains des sommets pour atteindre le même résultat. Cependant, à cause de
l’aspect dynamique, il est plutôt facile d’avoir des changements non voulus (ou
des changements voulus non prédits, dans le cas de l’atteinte existentielle).

Une idée est de sélectionner le Feedback Vertex Set du SCC, l’ensemble
minimal de sommets tel que, privé de ces sommets, le SCC ne contient plus
aucun circuit positif. En modifiant les sommets de cet ensemble, tout cycle serait
effectivement détruit (car comme on change la fonction en fixant un sommet, on
supprime toutes les arrêtes entrantes), et donc le seul point fixe atteignable serait
y (par Theor.1). Cependant, le problème de la dynamique se pose encore, comme
le démontre l’exemple 8. De plus, cette méthode ne renvoie pas toute les solutions
(modifier {2} ou {3} dans l’ex.8 permet de modifier tout le SCC) et même
peut ne pas renvoyer la meilleure solution (dans l’ex.8, modifier uniquement {3}
permet à y d’être le seul point fixe atteignable et de résoudre le problème).

Exemple 8. Illustration du problème au sein d’un SCC en prenant en compte
la dynamique.

f1(x) = ¬x3 ∧ ¬x2

f2(x) = ¬x1

f3(x) = ¬x1

f4(x) = x2 ∧ ¬x1 ∧ ¬x3

f5(x) = x4 ∨ x5

1

2

3

4 5

Figure 9 – Réseau booléen de dimension 5 et son graphe d’interaction

Soient x = 10000 et y = 01100, et 01101 = z, qui sont tous trois des
points fixes. Supposons que l’on veut qu’ y soit l’unique point fixe atteignable.
L’algorithme trouve que si le premier SCC {1, 2, 3} est modifié, alors y est
l’unique point fixe atteignable. En modifiant le Feedback Vertex Set, {1}, mais
plutôt que d’avoir le chemin 00000→ 00100→ 01100, on peut avoir

00000→ 01000→ 01010→ 01011→ 01111→ 01101

Ce qui permet à z d’être atteignable en modifiant uniquement {1}, et qui
donc rend l’algorithme faux.

Pour résoudre le problème, il est donc nécessaire, soit de trouver une méthode
de sélection des sommets qui empêche d’avoir des répercussion sur les descen-
dants en dehors du SCC (en s’intéressant particulièrement aux sommets ayant
des arrêtes sortantes du SCC par exemple), soit de transformer S en liste de
sommets et de chercher les sommets à modifier dans le SCC en tant qu’étape
intermédiaire dans les algorithmes précédents.
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En utilisant les résultats de la section précédente, j’ai un algorithme basique
qui permet de trouver un ensemble de RD qui garantit l’accessibilité inévitable
du point fixe cible. L’algorithme choisit récursivement un sommet u dans le
SCC le plus bas relativement à l’ordre ≺ et modifie sa fonction pour qu’elle
vaille la constante yu. Le graphe d’interaction du réseau booléen résultant est le
sous-graphe du graphe d’interaction initial, mais où toutes les arêtes entrantes
vers u ont été supprimées. Donc le SCC O1 est divisé dans le nouveau graphe.
Si nécessaire, un nouveau sommet peut être choisi dans le SCC le plus faible :

RecursiveAlgorithm(f , rd) :
— Si ∃z ∈ FP(f), x[xrd=yrd] →∗ z alors :

— res = ∅
— i = mina∈{1,..,k}(a | ∃z ∈ FP(f), zOa

6= yOa
, x[xI=yI |I∈S] →∗ z)

— Pour tout u ∈ Oi :
— g := f avec gu := yu
— res := res∪ RecursiveAlgorithm(g, rd×̄{u})

— renvoyer res
— sinon :

— renvoyer rd
On peut remarquer que l’algorithme trouve toujours une solution : si le point

fixe cible n’est pas l’unique point fixe atteignable, alors il y a au moins un circuit
positif (et donc un SCC) qui a des valeurs différentes entre y et un des points
fixes atteignables (et sera donc choisi par l’algorithme).

Exemple 9. Appliqué au réseau booléen de la Fig.9 avec x = 10000 et y =
01100, l’algorithme ci-dessus renvoie, par exemple, l’ensemble {2, 5}. En effet,
{2} est dans O1. En fixant f2 = 1, le nouveau graphe d’interaction a deux
SCCs contenant des cycles positifs : {1, 3} et {5}. Depuis l’état 11000, deux
points fixes sont atteignables dans ce nouveau réseau booléen, 01100 et 01101.
Comme le SCC {1, 3} a les mêmes valeurs qu’en y dans ces deux points fixes, le
SCC sélectionné par l’algorithme est {5}. Après, depuis 11001 le seul point fixe
accessible est y.
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6 Méthodes

Afin d’implémenter un algorithme, quel que soit le langage de program-
mation utilisé, il est nécessaire de pouvoir calculer les composantes fortement
connexes et de pouvoir faire des tests d’atteinte. J’ai décidé d’écrire une version
moins aboutie de l’algorithme de recherche des RDs pour l’atteinte inévitable
en OCaml. Le code source est donné dans les fichiers joints.

Le calcul des composantes fortement connexes est fait en temps linéaire par
rapport au nombre de sommets du graphe, par la méthode de Tarjan, qui est
implémentée dans la bibliothèque de graphes en OCaml.

Pour ce qui est du calcul des points fixes atteignables à partir d’un état
(les tests d’atteinte), deux méthodes existent : calculer tous les points fixes
(problème NP-complet), puis vérifier lesquels de ces points sont atteignables en
utilisant des méthodes PSPACE-complètes de model-checking ; ou alors calculer
directement la dynamique et en extraire les attracteurs ce qui est également
PSPACE-complet[3]. J’ai utilisé l’outil ”pint” de Löıc Paulevé pour calculer les
points fixes atteignables.

Le code source en OCaml en annexe nécessite pint d’installé, ainsi qu’un
compilateur OCaml avec les bibliothèques Graph, Unix, Array, et List.
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7 Discussion

Ce rapport donne la première caractérisation formelle des déterminants de
reprogrammation pour passer d’un point fixe à un autre dans la dynamique
asynchrone d’un réseau booléen.

Dans le cas de la reprogrammation pour l’atteinte existentielle, j’ai prouvé
que tous les ensembles minimaux possibles de RDs sont dans certains SCCs
particuliers du graphe d’interaction, et j’ai donné un algorithme permettant de
déterminer cette exacte combinaison de nœuds. Cette caractérisation s’appuie
sur les vérifications de l’atteinte possible du point fixe cible.

Dans le cas de la reprogrammation pour l’atteinte inévitable, j’ai montré que
les RDs ne sont pas forcément dans ces SCCs particuliers. Cependant, l’algo-
rithme donné garantit l’atteinte inévitable du point fixe en trouvant des RDs
dans ces SCCs. Cet algorithme se base sur l’énumération des points fixes.

J’ai également prouvé que les tests d’accessibilité sont indispensables pour
avoir un ensemble de SCCs (et donc par conséquent de RDs) minimal.

Une des limites majeures de ces algorithmes est donc les nombreux tests
d’atteinte qu’ils ont besoin d’effectuer. La poursuite de ce stage en doctorat
me permettra de me pencher sur la factorisation possible de l’exploration de la
dynamique des réseaux booléens.

Une autre variable à ne pas oublier est la limitation de ce travail aux chan-
gements permanents : quand un nœud est changé, il ne peut pas revenir à sa
valeur précédente et gardera donc sa nouvelle valeur de manière permanente.
Étudier les mutations temporaires (où le noeud reviendrait à sa fonction initiale
après un certain ”temps”) serait donc intéressant, mais également bien plus dif-
ficile, car il faut alors prendre en compte l’ordre des mutations, leur durée, et
les RDs ne seraient plus a priori uniquement dans les composantes fortement
connexes contenant des circuits positifs, comme c’était le cas pour les mutations
permanentes.

Une autre problématique est l’ordonnancement des mutations, qui a un im-
pact à la fois pour les mutations permanentes et temporaires. L’exemple 10
donne une idée de l’importance de l’ordre des mutations et de la notion de
durée.

Exemple 10. Sur le réseau booléen de la fig.10, en choisissant x = 0000 et
y = 1101, un algorithme qui ne prend pas en compte le temps est forcé de
modifier {1, 2, 4} si l’on cherche à avoir une atteinte inévitable. Cependant, si
l’on modifie {1} et que l’on attend ”suffisamment longtemps”, il suffit ensuite de
modifier uniquement {2}. ”Attendre suffisamment longtemps” dans ce contexte
est attendre que la succession d’états 1000→ 1010→ 1011 soit effectuée.
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f1(x) = x1

f2(x) = x2

f3(x) = x1 ∧ ¬x2

f4(x) = x3 ∨ x4

3

1

2

4

Figure 10 – Réseau booléen de dimension 4 et son graphe d’interaction
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8 Acquis du stage

Cette section rapporte mes acquis pendant le stage.

8.1 Méthodes de recherche

Tout au long du stage, l’objectif a été de trouver des théorèmes qui donne-
raient un lien entre les RDs et le graphe d’interaction. J’ai donc appris les bases
des techniques de recherche d’article, que ce soit trouver les articles constructifs
sur le sujet ou la lecture de ces articles. J’ai également appris les techniques sur
les résultats : la discussion de ceux qui sont possibles, de ceux intéressants, de
la preuve de ces résultats mais aussi comment trouver des contre-exemples.

8.2 Algorithmique et programmation

Comme je cherche à avoir une méthode algorithmique pour trouver les RDs,
j’ai eu à me pencher sur l’écriture de programmes et le calcul de complexité.
Cela m’a permis de me perfectionner en OCaml, et également à chercher l’opti-
misation des temps de calcul maximaux.

8.3 Réseau

Des conférences et ateliers ont eu lieu pendant mon stage, auxquels j’ai été
invité. Cela m’a permis de connaitre un peu plus les personnes qui travaillent
dans le cadre des réseaux booléens et des graphes d’interaction, et d’élargir ma
culture sur leurs usages.

8.4 Rédaction scientifique et présentation de résultats

En plus du rapport de stage, qui se présente sous une forme assez proche
de celle de l’article scientifique, j’ai également eu à rédiger un article pour la
conférence de Hybrid Systems Biology qui aura lieu en octobre. J’ai donc appris
à formater et à rédiger sous un style scientifique, ainsi que comment rédiger en
LATEX.

De plus, j’ai parfois eu à présenter mes résultats, ce qui m’a permis d’améliorer
mes performances de présentation orale, mais également de savoir introduire
mon sujet de manière précise et concise et de développer des exemples pour
faciliter la compréhension.

8.5 Inscription dans le parcours professionnel

Je souhaite devenir enseignant-chercheur, donc ce stage m’a permis de com-
mencer la recherche.De plus, je prolonge ces recherchs en doctorat, ce qui me
permettra de pousser plus loin autant dans mes activités de recherche que dans
ma volonté d’enseigner.
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