Computing Cut Sets for Petri Nets

Clara Scherbaum

July 28, 2016

This report introduces several algorithms to compute cut sets of Petri nets.
A cut set is a set of places computed with respect to a certain Petri net and
a bad place of that Petri net. The characteristic of a cut set is that if we
never have a token on the places of the cut set then we never have a token
on the bad place. A motivation to compute cut sets is to propose a therapy
for Petri nets corresponding to biological networks where we would like to
forbid certain behaviour. We present in total three methods. Two of those
methods are complete and correct methods for computing cut sets and one is
an under-approximation. Whereas the first method is based on the marking
graph of the Petri net, the other methods are unfolding-based. The two exact
methods result in a second step in an Answer Set Program. A comparison
of the two methods shows off that they are suited to different properties of
a Petri net. Furthermore, we introduce a notion of cut sets that also allows
to preserve certain good behaviour and propose a method how to compute
these sets.

1 Introduction

Petri nets are a widely used model. Among other contexts Petri nets can be used to
represent the dynamics of biological systems |[CHJT14, [SBW06, [CP16]. In biological
networks there might be undesired behaviour. To propose therapies we need to find
other parts of the network that we can block and whose blocking results in an avoidance
of the undesired behaviour. This gives rise to a formal definition of set of states/places
of a network whose regulation forbids the undesired behaviour [Paul6l, [SvKKI0, [HK11l
CP16].

We define cut sets of a Petri net with respect to a certain place of the net, the bad place.
A cut set is a set of places such that if we never have a token on each of these places
there will never be a token on the bad place. We will concentrate on the computation
of minimal cut sets, cut sets minimal with respect to set inclusion. We aim to develop
algorithms that find all minimal cut sets of a Petri net and a bad place. In a next step
we extend the notions of cut sets to the one of control sets. The main difference is that

the aim is to find sets that do not only prohibit bad behaviour but also allow for good
behaviour.

The computation of cut sets also with regard to the preservation of good behaviour in
boolean networks was investigated in [SVKK10]. That algorithm is based on enumeration
and aims to work on boolean networks. Furthermore, there exist an under-approximation
for cut sets in automata networks [PAK13]. This approach is based on obtaining a
structure representing causal dependencies in the automata network. Using this as a
starting point several cut sets are computed. None of these algorithms is based on the
semantics of the Petri net. The execution semantics and concurrency semantics of Petri
nets have different advantages and disadvantages that suggest that for different Petri
nets certain semantics provide a better starting point for algorithms. Given the size of
the biological networks, runtime of algorithms is of importance, and therefore the need
to investigate the difference the used semantics can make. Furthermore, we show several
ways to generate an answer set program to obtain all cut sets. As ASP solvers have

been intensively studied over the past years solvers have implemented good heuristics to
approach the problem |[GKK™11].

This report presents in total three algorithms. The first two are complete and correct
algorithms based on the different semantics of Petri nets and using answer set program-
ming. The third one is an under-approximation. Our first two methods aim for suitable
algorithms with regard to the Petri nets and instead of enumerating with own heuristics
using heuristics of efficient and carefully-developed solvers. The first algorithm is based
on the marking graph of the Petri net, the second one on the unfolding and one of its
prefixes respectively. This gives also rise to a comparison of the two methods. The third
method is an under-approximation. In contrast to the under-approximation developped
in [PAK13] it is based on the Esparza-Romer-Vogler prefix [ERVI6] of the Petri net.
This gives rise to new observations of characteristics of this prefix.

2 Petri Nets, their Unfoldings and Prefixes

In this section we introduce Petri nets, its execution semantics and its concurrency
semantics. By execution semantics we mean the marking graph and by concurrency
semantics the unfolding and underlying concepts as branching processes and occurrence
nets. An general overview on Petri nets can be found in [Reil3].

2.1 Introduction to Petri Nets and their Execution Semantics
In this subsection we introduce the definitions of a Petri net and other basic concepts
such as pre- and postsets and the marking graph.

A Petri net is a model for representing concurrent systems. Formally, it is a directed,
bipartite graph where the nodes can be places or transitions. A place can hold an

p1 D2

b3 P4

Example 1: Petri net Ny

arbitrary number of tokens. A marking specifies the number of tokens on each place. A
transition is enabled by a marking iff there is a token on each places that have an edge
to the transition. If a transition is enabled by a marking, it can fire. Firing a transition
removes one token from each place having an edge to the transition and adding one token
to each place that the transition has an edge to. Hence, a Petri net consists of places,
transitions, a flow relation which describes the edges between places and transitions and
an initial marking. The initial marking specifies how many tokens are on each place
before any transition has been fired.

Definition 1 (Petri net). A Petri net is a quadruple N = (P, T, F, M) where
e P is a set of places

e T is a set of transitions

FC{(p,t)lpe P,te T} U{(t,p)|t € T,p € P} the flow relation

e My C P is the initial marking referring to all places that initially hold a token.

To get a deeper insight into Petri nets and related concepts such as its marking graph
and its unfolding we look at an example.

The Petri net of Example 1 is formalized by N = (P, T, F, My) with My = {p1,p2}. To
be able to easily refer to the places relevant for infering a transition, we define the preset
and the postset of a node in the Petri net. A preset of a node contains all nodes that
have an edge to the node and in the postset are all nodes that can be reached by using
one edge.

Definition 2 (Pre- and postset). The preset of any node n € PUT of the Petri net, *n,
is defined as

*n={n'|(n',n) € F}.

The postset is analogously defined as

n® = {n'|(n,n') € F}.

Above, we explained when a transition is enabled by a marking and what marking is
reached if it fires. We can now properly define this by referring to the pre- and postset
of the transition. A transition is enabled by a marking iff there is a token on each place
of its preset. When it fires we remove one token from each place in the preset and add
one to each place in its postset and obtain this way a new marking.

Definition 3 (Enabling and firing of a transition). A transition t € T is enabled by a
marking M C P iff *t C M.

When firing ¢ € T, enabled by M, this leads to a new marking M’ with M’ = (M*t)Ut®.
We also write for this M - M.

By being able to fire several transitions in a row we obtain a transition sequence.

Definition 4 (Transition sequence). o = t1...t, with {¢1,...,t,} C T is a transition
sequence iff there exist My, ..., M, such that

Mo My, I8 M,

In the context of Example [1| we can obtain among others the following transition se-
quences:

{(prop2} 3 {ps.pa} B3 {p2.ps} B {p2.ps) B {prop2)
{p1, 02} 2 {p3,pa} = {pa,ps} 2 {p2,ps} = {p1, 02}

We see that we can reach different markings by firing transition sequences such as the
ones above. This leads to the definition of reachable markings.

Definition 5 (Reachable marking). Given a Petri net N = (P, T, F, My) a marking M
is reachable iff there exists a transition sequence o =ty ...t, such that
g

Mo —* M
In the following, we only work with Petri nets that cannot reach a marking in which we
have more than one token in a place. We call these Petri nets safe Petri nets.
Definition 6 (Safe Petri net). A Petri net is safe iff there is no marking reachable where
we have more than one token at one place.
From now on, when we use the term Petri net we mean safe Petri net.

To represent all reachable markings of a net we can construct the marking graph. The
marking graph has as nodes reachable markings and two markings M7y, Ms are connected

{p1,p2}

{pa,p5} {p2,p3}
}/ w
{p1,pa} {p2,p5}

Example 2: Marking graph of Petri net N7 from Example

by an edge iff there exists ¢t € T such that M; N M. We label the edge from M; to My
by all transitions that are enabled by M; and reach by firing M,.

Definition 7 (Marking graph). A marking graph is a directed graph (V, E') where each
V is the set of all reachable markings and for two reachable markings M, My € V there
is (M, Ms) € E CV x V iff there exists a transition ¢ € T such that M; 2 M.

The marking graph of the Petri net of Example [I] can be seen in Example

As we obtain the marking graph by executing enabled transitions one-by-one we also
refer to it as the execution semantics of a Petri net.

2.2 Concurrency Semantics of Petri Nets

In the last subsection we introduced Petri nets in general and their execution semantics,
the marking graph. In this subsection we show some of the weaknesses of this semantics
and introduce another semantics, the concurrency semantics of Petri nets. As in the
previous section, we use the term “Petri net” in the sense of “safe Petri net” (Definition
[6). A formal introduction to unfoldings can be found in [EHOS]|.

When we only want to know whether a certain marking is reachable by performing a
marking sequence from the initial marking we can check whether there exists a path
in the marking graph from the initial marking to the sought-after marking. Regarding
Example [1] when we want to check whether there is a non-empty transition sequence
from the initial marking that leads to the initial marking again we find three different

he

Example 3: A branching process of the Petri net N7 from Example (1, B

acyclic paths.

(1,02} 3 {3, pa} 3 {p2.p3} 3 {p2,ps} 5 {p1,pa}
{102} B (P31} 3 {pa,ps} 3 {p2.ps} 3 {p1,p2)
{(p1, 2} 3 (03,04} 2 {payps} 3 {p1,pa} 2 {1, p2}

Comparing these marking sequences we observe that the transitions that are used for the
three transitions sequences are the same, only their schedules varies. This may indicate
that the marking graph is not the most compact model. There are even more schedules
if we have more transitions that can fire at the same time. If we have n transitions
that can fire at the same time, we can reach the marking that holds after firing all of
these transitions by n! different interleavings. This leads to a combinatorial explosion in
the marking graph. It would be useful to have a representation that takes not only into
account that a transition is enabled by a certain marking but also that certain transitions
are concurrently enabled by a certain marking. Therefore, we will look at the concept
of branching processes and unfoldings.

In Example [3| a branching process of the Petri net in Example [I] is shown.

A branching process is an occurrence net related by a homomorphism to another Petri
net. We see that we have attached to each place and transition two designations. The
one in gray is the name of the place/transition and the one in black is its label. We
can have several places/transitions with the same label. So there are for example two
places with the label p;. We see that by performing marking sequences in this net we
obtain marking sequences of the original net when looking at the labels of the places
and transitions, and vice versa. We illustrate this with an example.

{c1,e2} S {es,ea} 3 {er,e3) 2 {er,co) 3 {er,c8)

When looking at the labels of the places and transitions in the marking sequence above
we obtain the following sequence:

{P1,P2} Q {p3,p4} g {Pz,Ps} S {p2,p5} % {Pl,Pz}

This is also a sequence in the Petri net of Example

To distinguish the places of this net from the places of the original net and the transitions
respectively we denote the places and transitions of this net conditions and events,
respectively. We see that the labels of the conditions and events correspond to the
context these places and transitions of the original net had, ie the labels of the pre- and
postset correspond to the original pre- and postsets, too.

We observe that for firing e we need to fire e; (analogously for es and e4). Therefore,
we say ej is in causal relation with eo. Formally, we define the causal relation by saying
that two nodes (so events or conditions) are in causal relation if there is a directed path
from one to the other in the Petri net.

We see furthermore that if we fire es we can no longer fire e3. We denote that relation
by saying es and e3 are in conflict. Formally two nodes are in conflict if we have two
paths in the net from a condition and each path comes across one of these events and
the paths directly diverge.

We also see that es and ey are neither in conflict nor does one causally precede the other.
We can deduce that firing es has no effect on firing e4 and the other way around. We
therefore say, eo and e4 are concurrent.

Of course, not only transitions but also places can be in such relations.

Definition 8 (Causal, conflict and concurrency relation). We have a Petri net
N = (P, T, F, My).

A node ny € T U P is causally preceding another node no € T'U P if there exists a path
from n; to ny. We denote that relation by writing ny < nas.

A node ny; € TU P is in conflict with another node no € T'U P if there exist t1,to with
t;1 < ni and ty < ny and *t; N® ty # (). We denote this relation by writing nq#ns.

If two nodes n1,ny € TUP are neither in conflict nor causally related they are concurrent.
We denote this by saying ni co ns.

Formally, a branching process is an occurrence net with a specific labelling function. A
Petri net is an occurrence net if no place can hold more than one token, it is acyclic, it
has initial conditions whose preset is empty and no node is in conflict with itself.

Definition 9 (Occurrence net). A Petri net O = (C, E, F, My) is an occurrence net iff

e There are no two nodes nj,ne € C U E such that n; < ng and ny < n; (The
causality relation is acyclic).

e A condition holds at most one token and M(c) =1 iff |*¢| = 0.

e For every event e € E, e#e does not hold and {n|n < e} is finite.

As we said before, we use occurrence nets to illustrate reachable markings and transition
sequences of another Petri net. Therefore, we have a labelling function establishing a
connection between conditions and events of the occurrence net and places and transi-
tions of the original Petri net. This labelling function from the conditions and events of
the occurrence net to the places and transitions of the original Petri net should fulfil the
following conditions:

e It should map conditions only to places and events only to transitions.
e It should preserve pre- and postsets of places and transitions.

e The initial marking of the occurrence net should be mapped to the initial marking
of the original Petri net.

Definition 10 (Net homomorphism). Given an occurrence net O = (C, E, Fp, My,,)
and N = (P, T, Fy, My,) a function 7: CUE — PUT is a net homomorphism iff the
following conditions hold

e T(C)CPand n(E)CT

e For all e € E the restriction of 7 to ®e is a bijection between ®*e and *w(e) and the
restriction of 7 to e® is a bijection between e® and m(e)®

e The restriction of m to My, is a bijection between My, and My, .

Therefore, a branching process is an occurrence net with a net homomorphism mapping
its conditions and events to places and transitions of the original Petri net. Furthermore,
we enforce that there are no duplicate events meaning two events with the same preset
and the same label.

Definition 11 (Branching process). A branching process B = (O, m) of a Petri net
N = (P,T,F, M) consists of an occurrence net O = (C, E, Fp, My,,) and a net ho-
momorphism 7: C U E — P UT such that for all e1,es € E with ®e; =°® ey there is

m(ey) # m(ea).

We can compare branching processes with regard to their sizes and structures. We
illustrate this with Example

Intuitively, we could say that Bj is “contained” in the branching process By. We observe
the same for the branching process B3 and By. However, B; and B3 do not seem related
in that way. This intuition leads us to the relation “C”. Two branching processes are in
that relation iff there exists an injective homomorphism from the first one to the second
one.

Definition 12 (Partial order on branching processes). Given two branching processes

p3 c3 Q/EKQ pa c1

3 3 |;|
D5 Co O

Example 4: Some branching processes of the Petri net Example

By, By of the Petri net N = (P, T, F, My) there is By C By iff there exists an injective
net homomorphism from B; to Bs.

Regarding Example we have By C By and B3 C Bs.

When we look at Example [I] and the first branching process we looked at in Example
we see that we can extend this branching process such as done in Example

So we have By C B4. We can extend the branching process from Example [5| again.

When we speak about the unfolding of the Petri net we mean the branching process
that is maximal up to isomorphism with regard to C. The unfolding may be infinite in
general.

Definition 13. Given a Petri net N = (P, T, F, My) its unfolding is its maximal branch-
ing process up to isomorphism with regard to C.

Additionally, the following theorem states that the unfolding of a Petri net always exists
and is unique.

Theorem 1. Each Petri net N = (P, T, F, My) has a unique unfolding up to isomor-
phism.

/DQ €6
p3 9 O O b4 C10

Example 5: A branching process of the Petri net Example |1, By

The proof is out of scope of this report and can be found in [Eng91]. U

Although the unfolding contains useful information about the Petri net, its use is very
limited due to the fact that it is infinite in general. Therefore, it would be helpful if we
could obtain information relevant for us, only by looking at a part of the unfolding that
preserves this information. This leads us to the idea of a finite prefix of the unfolding. To
introduce that concept we first introduce the concept of configurations and cuts.

A configuration is a set of events that are causally closed and conflict free.

Definition 14 (Configuration). Given an occurrence net O = (C, E, F, My) a configu-
ration Conf is a set of events, Conf C FE, satisfying the following conditions:

e If ¢ € Conf then for all ¢/ < e there is ¢’ € Conf, too.

e For no two events ey, eq € Conf there is e;#es.

Regarding Example [5, Confr, = {e1, ea2,e4} is a configuration among others.

A cut of a configuration is the marking we obtain after firing all events in the configu-
ration.

Definition 15 (Cut). Given an occurrence net O = (C, E, F, Mj) and a configuration
Conf C E the cut of Conf, Cut(Conf) is defined as follows:

Cut(Conf) = (MyUC*)*C

10

The cut of the example from above is

Cut(Confg,) = Cut({e1,e2,e4}) = ({c1,ca} U{es, cq,c5,c7})\{c1, ca, c3,ca} = {c5, 7}

Furthermore, the marking of a configuration is defined as the set of places corresponding
to the conditions in the cut of the configuration.

Definition 16 (Marking). Given a Petrinet N = (P, T, Fy, My,) and one of its branch-
ing process B = (O,) with O = (C, E, Fp, My,,), and 7 is a net homomorphism from
N to O. Then, the marking of a configuration Conf C E, Mark(Conf) is defined as
follows:

Mark(Conf) = n(Cut(Conf))

The marking of the configuration Con fg, is

Mark(Confp.) = n(Cut(Confr.)) = 7({cs, c1}) = {p1, p2}-

In the following, we use a special kind of configurations, local configurations. Given an
event its local configuration contains all events causally preceding this event.

Definition 17 (Local configuration). Given an occurrence net. The local configuration
of event e € F is given by

le] = {e'le < e}

Regarding Example |5, we have for example

[66] - {617 €3, €4, €5, 66}

The idea on how to shorten the unfolding and obtain only a finite branching process still
containing enough information is the following;:

As we deal only with safe Petri nets, we have a finite number of different markings. What
other transitions can be fired from a marking does not depend on how we reached it.
So if we have two events whose local configurations have the same marking it suffices to
explore only the future of one of these events. To decide which event is further extended
we need an order on the local configurations. We call such a finite branching process
prefirz. A total adequate order “<” on configurations is suggested in [ERV96]. From
now on we refer with the term “ERV-prefix” to the prefix generated with this total
order according to the algorithm in the previously mentioned paper. We generate the
ERV-prefix for a Petri net with the tool mole [Sch].

Now, we look at the Petri net from Example [I| and its ERV-prefix.

11

T2 (e2)

T5 (e4)

QPC

‘ T1(e5) | T4 (e6)

5

Example 6: A prefix of the Petri net from Example and its ERV-prefix

T3 (e3)

Regarding the example we notice that e5 and eg are not further extended due to the fact
that the marking of their local configurations already appeared, as we have

Mark([eg]) = Mark({e1,es,ec}) = m({c3,c10})
= {p1,pa}
= m({cs, c7}) = Mark({e1, es}) = Mark([eq])

We have a similar situation for [e5] and [e1].

We denote events such as e; and eg as cut-off events. An event is a cut-off event iff
there exists another event whose local configuration is less with regard to the order <
and these two local configurations have the same marking.

Definition 18 (Cut-off event). A cut off event is an event e, in the EVR-prefix such
that there exists another event e,.;q which satisfy the following two constraints

° Mark([ecut]) = Ma?“k([eorig])
° [eorig] < [eCUt]

With orig(ecy:) we denote the most minimal e,y satisfying these two constraints. As
< used in the ERV-prefix is a total order for each cut-off event, such an event exists.

The cut-off events of Example are the ones filled gray and the reason for the cut-off
and their frame has the same color as the event that was the reason for the cut-off.

12

So, eg is a cut-off event because of event e4 and e5 is a cut-off event because of event
€1.

3 Cut Sets of a Petri net

In the following section we introduce the notion of cut sets of a Petri net. We first define
what a (minimal) cut set is and illustrate this with an example.

Given a safe Petri net P = (P, T, F, Mp) and a bad place p, € P a cut set is a set of
places such that if there is never a token on these places there will never be a token on
the bad place. Speaking from a biological perspective a cut set can propose a therapy:
If we avoid a situation corresponding to having a token on a place of a bad event then
we will never have the situation corresponding to having a token on the bad place. We
specifically enforce that the cut set cannot contain any places that are part of the initial
marking. Again, speaking from the biological perspective having a cut set that contains a
place of the initial marking is not of a lot of use as we cannot avoid this behaviour.

Formally, a cut set is defined with regard to the unfolding 4 = (O,) where O is an
occurrence net and 7 a labelling function mapping the conditions of the unfolding to the
places of the original net. A cut set is a set of places such that each condition of the
unfolding labelled by the bad place is preceded by a condition labelled by a place of the
cut set.

Definition 19 (Cut set). K C P\(MoU{ps}) is a cut set for p, € P\ M if the following
holds:

For all ¢ € C(U(N)) with ¢ € 7! (p,) there exists 7(c’) € K with ¢/ < c.

We illustrate this definition with an example. For Example [7]among others the following
sets are cut sets for the bad place ps: {p2,p4,p6}, {P2,ps} and {p2, ps,p5}. The place py
in the last cut set {p2, p4, ps} is redundant as {p2, ps} is already a cut set. This leads us
to the definition of a minimal cut set. A cut set is minimal if none of its proper subsets
is also a cut set.

Definition 20 (Minimal cut sets). Given a Petri net N = (P, T, F, M) and a bad place
pp € P acut set K C (MyU{pp}) is minimal iff the following holds:

For all K’ C K, K' is not a cut set for N and py.
Beside minimality one can imagine other desirable properties for a cut set, e.g. it should

be preferably small or it should not contain certain other places that we cannot prevent
having a token.

As we excluded the initial marking and the bad place from any cut set we should keep
in mind that there are Petri nets and bad places for which no cut set exists. See for this

13

L T e

» »I
P TES:
s %)tB s @ pt%) g)tp
0 » @ C B2

Example 7: A Petri net (left) and its unfolding (right). Among others the following sets
are cut sets for the bad place ps: {p2,ps,p6}, {P2,p5} and {p2,ps,ps}.

b1

7
I?h
32

Example 8: Petri net that has no cut set

Example[8} The bad place is p2. As a cut set must not contain any place that is initially
marked there is no cut set here.

4 Computation of a Cut Set on the Petri Net

Cut sets are defined with regard to the unfolding of a Petri net. As the unfolding can be
infinite using the unfolding to obtain cut sets is not useful. Therefore, we might consider
using a finite prefix of the unfolding or the Petri net itself for computing cut sets. We
first suggest an approach that is based on the Petri net and its reachable markings. The
idea is to characterize properties a cut set has with regard to the Petri net and then
formulate an ASP problem to find all minimal cut sets. In the second part of the section
we study the computation of cut sets based on a unfolding prefix.

14

4.1 Properties of a Cut Set

For computing cut sets of a Petri net we can use the following relationship between a
cut set and a Petri net: A set of places is a cut set iff there is no marking sequence from
the initial marking to a marking that contains a bad place that does not also contain
a marking with places from the cut set. We illustrate this with Example [7] In this
example possible marking sequences from the initial marking to one that contains the
bad place are the following:

(1} 5 {pa} 2 {ps}
{p1} 3 {pa} ™ {ps} 3 {ps}
{p1} % {ps} > {ps} 2 {ps}

In this example we have only finitely many marking sequences. That does not hold in
the general case. The set {p2,ps5} is a cut set as there is no marking sequence from the
initial marking {p;} to a marking that contains {p3} that does not see a marking that
contains po or ps beforehand. The set {ps} for example is not a cut set as the first and
the third marking sequence do not contain the place p4 in any marking but still reach
the bad place ps.

We can also modify the Petri net with regard to our potential cut set: We remove all
transitions that are enabled by places in the potential cut set. If there is still a marking
sequence which contains a marking putting a token on the bad place, we know that our
set is not a cut set. In fact, the other direction is also true: If we have a set of places
and we block all transitions enabled by these places and cannot reach a marking that
contains the bad place then our set of places is a cut set.

Theorem 2. Given a Petri net N = (P, T, F, M), a bad place p, € P and a set of
places K C P\(Mo U {pyp}) the following holds:

K is a cut set iff there is no marking My with p, € My, reachable in N' = (P,T', F', My)
with

o T"={teT|*tNK =0}
o F'={(p,t) e Flte T'}U{(t,p) € Flt e T'}

Proof We prove both directions by contraposition.

= There is a marking, My, reachable in N’ with p, € M. Then there exists a marking
sequence

Ty
Moy —%* M,

in N’ with T, C T". We can find a configuration C' corresponding to that sequence
in the unfolding of N with Mark(C)=M,;, and 7(C) = T}. None of the conditions

15

Example 9: The modified net for the set K = {p2,p4} and the net of Example

preceding an event of the configuration are in K as those places are not in the
preset of any transition of the modified net. So, K is not a cut set.

< K is not a cut set. Then there exists a condition ¢ in the unfolding with 7(c) = pp
and for all ¢ < ¢ there is w(¢/) ¢ K. We look at the local configuration of the
event e with ¢ € e® with [e] = {e1,...,ex} and e; < e; for all ¢ < j. This local
configuration corresponds to a marking sequence

My ™) T
As for all events there is m(*e¢)NK = () there is also *m(e)NK = @ so all w(e;) € T’
for all i € {1,..,k}. So there is a marking reachable in N’ that contains py. O

We illustrate this theorem with Example [7|and the set {p2, ps}. {p2,ps} is not a cut set
as we have in N’ with regard to K = {p2,p4} still a marking sequence with a marking
that contains the bad place (see Example E[):

{p1} % {pe} = {ps} 3 {ps}

Therefore, the set {p2, ps} is not a cut set.

To summarize what we found out: A set of places, not containing any initial places or
the bad place, is a cut set iff there is no marking sequence containing a marking in which
we have a token on the bad place in the Petri net that does not contain all transitions
whose preset contains at least one of the places of the set.

16

4.2 Using Answer Set Programming to Compute Cut Sets

With the knowledge from the previous subsection in mind we can obtain all minimal cut
sets using Answer Set Programming (ASP). The goal of this logic program is to find a
cut set for a given Petri net and a bad place. Our program has a solution if there exists
a cut set for the given Petri net and bad place. We characterize this solution by making
use of Theorem 2l Our program has a solution if there is a set of places such that no
initially marked place nor the bad place belong to that set and in the modified net (the
one where we omit all transitions whose preset contains at least one place of the set) we
cannot reach a marking that contains the bad place.

An ASP problem can be structured into three different parts [Lif08]. Regarding our
application they have to reflect the following properties of cut sets:

e In the generate part the solution candidates are generated. All subsets of places
are potential cut sets.

e In the test part we express constraints that have to hold for the solution. In our
case, this is that no marking containing the bad place is reachable and that neither
initially marked places nor the bad place are part of the cut set.

e In the define part we express rules to compute the reachable markings.

To obtain the answer sets (in our case cut sets) of the program we use the ASP solver
clingo |GKK™|. We illustrate the conception of the ASP instance by giving the instance
for Example

Our program contains different predicates and rules. We have the following predi-
cates:

e cutSet(p) where p is a place and it is only true iff p is in the cut set.

e marking a predicate that has as many arguments as the net has places. Each
argument can be set to “on” or “off” regarding whether the place represented by
the argument is present in the marking or not.

e isPlace(p) where p is a place.

In the generate part we specify that all places could be on the cut set:

{ cutSet(P)} <=1 :— isPlace(P).

In the define part we first specify the places and the initial marking as this is always
reachable.
isPlace(pl). isPlace(p2). isPlace(p3).

isPlace(p4). isPlace(p5). isPlace(p6).
marking (on, off , off , off , off , off).

That logic program has a rule for each transition of the Petri net. That rule says that
to fire the transition none of the places of the preset of transition are in the cut set

17

(otherwise they are not part of the modified net) and all of the places in its preset are
marked. The rule tells furthermore that we can reach the marking which holds after we
fired the transition.

The rule has the form:

marking_after_firing_transition:—
marking_enabeling_transition , not cutSet(preset_of_transition).

When specifying the markings for a transition ¢ € T we distinguish several cases for all
p € P:

e For all places that are neither in the preset nor in the postset of a transition,
p & (t* U t), we use variables to specify whether there is a token on these places.
The idea behind this is that none of these places effects whether ¢ is enabled and
none of these places is effected by firing t. Looking at #; in Example [7] these are
the places ps, p4,ps and pg. We use the variables P3, P4, P5 and P6 to refer to
whether these places hold a token or not.

e For all places that are in the preset of the transition, p €°® ¢, we specify that their
status has to be on to enable the transition. Regarding ¢; is Example |7] this is
the place p;. Depending on whether these places are also in the postset of the
transition, their status in the resulting marking is on or off.

e Places that are in the postset of the transition but not in its preset, p € (¢t**t),
prior to that, hold a token after firing the transition. So their status in the new
marking is on. Before they do not hold a token as otherwise the net would not be
one-bounded. For t; of Example [7] this is ps.

Here the resulting rules for the transitions of Example [7}

iatrﬁing(off ,on,P3,P4,P5 P6): —marking (on, off ,P3,P4,P5,P6), not cutSet(pl).
(lyilatri{ing(Pl,off,on,P4,P57P6):—marking(P1,on,off,P47P5,P6), not cutSet(p2).
Cfilatri(?)ing(off ,P2,P3,0on,P5,P6): —marking (on,P2,P3, off ,P5,P6), not cutSet(pl).
iaﬂiﬁing(Pl,PQ,P?;, off ;on,P6): —marking (P1,P2,P3,0on, off ,P6), not cutSet(p4).
(lyjlatriif)ing(Pl,PQ,on,P4, off ,P6): —marking (P1,P2, off ,P4,0n,P6), not cutSet(p5).
Cfilatrikfiing(off,1:’2,P?),P4,P5,on):frnarking(on,P2,P3,P4,P5,off), not cutSet(pl).
Zjlatriiing(Pl,PQ,PS,P4,on,off):—marking(Pl,P2,P3,P4,off,on), not cutSet (p6).

In the test part, we specify that we should not be able to derive a marking containing
the bad place. Furthermore, we enforce that the initially marked places and the bad
place are not part of cut set.

:—marking (- ,_,on,_,_,_).

18

:—cutSet (pl).
:—cutSet (p3).

By adding an optimization statement we could enforce that we want to obtain only cut
sets that are minimal with regard to cardinality. We can generate these ASP instances
automatically for a given net.

Taking everything into consideration, we showed that cut sets correspond to not reaching
a marking that contains the bad place in a modified net. The modifications were to re-
move or block transitions enabled by places from the cut set. This led to the formulation
of an ASP problem. The answer sets of this ASP problem are all minimal cut sets for a
given Petri net and a bad place. The ASP problems can automatically be generated with
regard to the specified Petri net and bad place. Furthermore, adding an optimization
statement allows to obtain the smallest possible cut set(s) [GKK™11].

4.3 Computation of Cut Sets Based on the Goal-Driven Unfolding

In the previous subsection we have seen how we can compute cut sets by using the
information of possible markings. This information can be obtained based on an ASP
encoding of the Petri net. What we did was basically computing the marking graph on
the fly. As the marking graph can be unnecessary large due to concurrent transitions,
an unfolding prefix could be a more suitable structure for computing cut sets. This also
corresponds better to the definition of cut sets: Cut sets are defined with regard to the
unfolding. As the unfolding can be infinite in general we could use for our computation a
finite structure related to the unfolding, hence a prefix of the unfolding. To compute cut
sets it is essential to be able to restore the information by what configurations we can get
a token on the bad place. However, not all configurations and transition sequences are
relevant for this purpose. We can discard for example all transition sequences containing
a cycle. In the following, we give a definition of cut sets based only on certain minimal
configurations. The concept of minimal configurations and transition sequences was
introduced in the context of a so-called goal-driven unfolding in [CP16]. Afterwards,
we give an introduction into a goal-driven unfolding and illustrate how cut sets can be
computed with one of its prefixes.

4.3.1 Prefixes Suitable for Computing Cut Sets

In this subsection we illustrate that only certain transition sequences are relevant for
determining whether a set of places is a cut set. We motivate this concept with Example

1a
We analyse the Petri net of Example with regard to the bad place pg. Transition

19

b1

t2 tl

P4 P2 P3 Y25 O
ts ﬂ [1te
/) pe O

pS.

Example 10: Petri net

t7

sequences leading to the bad place are, among others:

{p1} = {p2.p3.p5} = {p2, 05,06} > {ps. b7}

{p1} ™ {p2. 03,05} 3 {p3.pa,ps} =5 {p2.p3.p5} > {p2. 5, p6} - {ps, 7}
{p1} ™ {p2. 03,05} 3 {p3. 01, p5} > {1, p5, p6} > {p2, 95, p6} - {ps, p7}
{p1} % {p2,p3,p5} % {p2, 15,16} ﬁ) {ps, ps} tg {p7, s}

{p1} Q {p2,p3, 15} 3 {p2, 15,16} tg {p2,p6, P7} i {p7,ps}

We can avoid the first transition sequence from happening by putting one of the
places {p1,p2,p3,p6} in the cut set and the second one by putting one of the places
{p1,p2, 3, P4, P} in the cut set. As the set resulting from the second transition sequence
is a subset of the one from the first sequence we do not obtain any new information by
looking at the second transition sequence. This also corresponds to the observation that
the second transition sequence sees the marking {pa, ps, ps} twice. The third transition
sequence uses the same transitions as the second one. So we do not gain any new infor-
mation when looking at it. This corresponds to the observation that the third transition
sequence is a permutation of the second one. When we look at the fourth transition

20

sequence we see that to prevent having a token on the bad place we have to block the
transitions t1, t4 or t7. tg is not relevant as it fires if there is already a token on the bad
place. The fifth sequence is a permutation of the fourth one and gives us as such also
no new information.

We refer to transition sequences that lead to the bad place like the first one with the
term minimal bad transition sequence. The characteristics of a minimal bad transition
sequence are the following:

e It reaches a marking in which the bad place is marked. In that sense all three
transition sequences from above are bad.

e [t does not repeat any marking. If a transition sequence sees the same marking
twice we call it cycling. The second transition sequence is for example violating
this criterion.

e There is no cycling transition sequence to the bad place that is a permutation of
the transition sequence. The third transition sequence violates this criterion as it
is a permutation of the second transition sequence that is cycling.

e There is no marking that puts a token on the bad place reached before the end of
the sequence. The same holds for permutations of the transition sequence.

Definition 21 (Bad, cycling and minimal transition sequence). Let N = (P, T, F, M)
be a Petri net with a bad place p, € P\ Mj.

ag
A bad transition sequence is a transition sequence o with My —* M, with p, € M.

The transition sequence o of N is cycling if there is a marking M’ such that o it sees
the same marking twice. Meaning o = 010903 with

o3

o1 o9
My —=* M —=* M —* M,

A bad transition sequence o is minimal if it is not cycling and all transition sequences
that are permutations of ¢ are not cycling. In addition, there is no marking that puts
a token on the bad place reached before the end of the sequence. The same holds for
permutations of the transition sequence.

We do not restrict permutations of transitions to transitions that are in an specific
independent relation.

If we define minimal bad transition sequences we can also generalise this concept to
configurations.

Definition 22 (Minimal bad configuration). Let N = (P, T, F, My,) be a Petri net,
Py € P\My, a bad place and U = (O,) with O = (C, E, Fo, My,,) its unfolding.

A minimal bad configuration is a configuration C' that corresponds to a minimal bad
transition sequence.

21

Now, we prove that a minimal bad configuration is always a local configuration. The
intuition behind this is the following: Only one event of the local configuration is re-
sponsible for having a token on a condition corresponding to the bad place. In case a
minimal configuration contained an event concurrent to this event we could obtain a
shorter transition sequence by changing their order.

Lemma 1. Let N = (P, T, F, My,) be a Petri net, p, € P\My, a bad place and U =
(O, m) with O = (C, E, Fo, My,,) its unfolding.

A minimal bad configuration Cpipn is always a local configuration. Hence, there exists
an event e € Cpin such that for all € € Cyipn there is € < e.

Proof Our proof consists of several steps each one proving a specific property of a
minimal bad configuration Con f,in.

o Confpmin contains exactly one event ex with p, € mw(ex®).

Assume that there are two (or even) more events with this property. Hence, there
are ey, ex with p, € m(e}) and p, € m(e3). Then e; and ey are in causal relation as
otherwise the net was not safe. However, this would mean that Con f,,;, was not
minimal as we could construct a non-minimal bad transition sequence correspond-
ing to it that reaches two markings in which the bad place is marked. So, there is
at most one such event ex with p, € m(ex®).

There has to be at least one event like this as otherwise the configuration was not
bad.

e There are no events e with ex < e.

Assume there is an event e such that ex < e. It follows immediately that we can
construct a non-minimal transition sequence corresponding to the configuration.
This would mean that the transition is not minimal.

e There are no events e that are concurrent to ex. Assume there is an event
e € Con fin that is concurrent to ex. Then we could construct a transition se-
quence that looks like that:

w(Confmin\{€e}) .
My —* M, = Mj

with py € M, and p, € M;. However, this transition sequence is not minimal.

So all events e of the configuration are in causal relation with e, ex < e. This means
Con fmin = [ex] and it is a local configuration. O

In the following, we prove a lemma stating that if we have a bad transition sequence
that is not minimal, then there is a minimal bad transition sequence that uses only
transitions that are also part of the original transition sequence. For Example and
the five transition sequences the first transition sequence is a minimal bad transition
sequence and all the other transition sequences are not. Furthermore, the first transition

22

sequence uses only transitions that occur also in all the other non minimal bad transition
sequences.

Lemma 2. Let N = (P, T, F, My) be a Petri net and p, € P\My a bad place.

For all finite bad transitions sequences o that are not minimal there exists a minimal
bad transition sequence omin such that for all t € oy, there ist € o.

Proof We can obtain a minimal bad transition sequence o, for all non-minimal bad
transition sequences o by iteratively applying one of the following steps distinguishing
the different criteria that are violated:

e 0 is not minimal because we reach a marking with a token on the bad place before
the end of the sequence.

Hence, our transition sequence ¢ has the following structure: ¢ = o109 with

o1 o2
M() —* Mb1 —* Mb2

with p, € My, and p, € M,,. If 0 is already minimal we are done. Otherwise, we
construct a minimal bad transition sequence for the bad transition sequence o;.
As o7 contains only transitions from ¢ this minimal bad transition sequence also
contains only transitions from o.

e ¢ is not minimal because there is a permutation of it that reaches in an intermediate
step a marking that puts a token on the bad place.

We name this permuted transition sequence o’. ¢’ has the form o’ = o of with

with p, € M. If o} is already minimal we are done. Otherwise, we construct a
minimal bad transition sequence for the bad transition sequence o). As o} contains
only transitions from ¢’ and hence from o this minimal bad transition sequence
also contains only transitions from o.

e 0 is not minimal because it is cycling.

We remove the cycle and obtain by that a new bad transition sequence o’. If o’
is not minimal we construct a minimal bad transition sequence for it. As this
minimal bad transition sequence contains only transitions from ¢’ and ¢’ contains
only transitions from o we have then achieved our goal.

e 0 is not minimal because there exists a cycling permutation o¢ye.

If oy is already bad we construct a minimal bad transition sequence for it which
contains only transitions that are also in 0. If oy, is not bad we still know that it
reaches some bad marking before the end as it contains a transition that has the

23

bad place in its postset (otherwise o was not bad). We cut oy after reaching a
marking that contains the bad place and continue our algorithm with that tran-
sition sequence. The so-obtained minimal bad transition sequence contains only
transitions from oy and thus, only transitions from o.

As a non-minimal bad sequence always violates one of the four criteria above, we can
always modify the sequence by one of the four procedures from above. In addition, if
we have to apply several steps in a row we ensure that after each step we continue the
algorithm with a bad transition sequence. As the transition sequences are always finite
the algorithm terminates as we shorten the transition sequences with each step. [

In the following we show that for the computation of cut sets only minimal bad config-
urations are relevant. We do this by proving a theorem that states that a set of places
is a cut set for a bad place if and only if the preset of each minimal bad configuration
contains at least one place from the cut set.

Theorem 3. Let N = (P,T,Fy, My,) be a Petri net, p, € P\My a bad place and
U = (O,) its unfolding with O = (C, E, Fo, My,,).

K C P\(Mo, U {pp}) is a cut set iff for all events e such that [e] is a minimal bad
configuration there exists ¢ €* [e] with m(c) € K.

Proof

= If K is a cut set then for all ¢ € C' with 7(¢) = p; there exists 7(¢’) € K with
¢’ < c. As c has exactly one preceding event e =* ¢ this means that for all e € E
with p, € m(e®) there exists a ¢’ €°® [e] with m(c) € K. This also includes all the
minimal bad configurations as those are all local configurations by Lemma

< We prove this direction by contraposition.

If K is not a cut set there exists ¢ € C' with m(c) = pp, and for all ¢ < ¢ there
is m(c/) ¢ K. Hence, there exists a finite local configuration [e] with e =* ¢
with 7(®[e]) N K = (. If [e] is a minimal configuration we are done. If it is not
minimal there is a non-minimal bad transition sequence corresponding to it. With
Lemma 2] we can find a minimal bad transition sequence using only transitions
that are also in the non-minimal bad transition sequence. In addition, there exists
a minimal configuration corresponding to that minimal bad transition sequence.
This minimal configuration is the local configuration of an event e,,;, as by Lemma
all minimal bad configurations are local. There is 7(*[emin]) N K = () because
otherwise there was a ¢’ < ¢ with 7(¢’) € K as there only transitions used that are
also in [e]. O

This theorem gives rise to a new method for computing cut sets as we can see in the
next subsection.

24

4.3.2 Computing Cut Sets on a Prefix of the Goal-Driven Unfolding

In this subsection we introduce the concept of a goal-driven unfolding. In the last
subsection we have shown that only certain configurations are necessary to compute cut
sets. The characteristic of a goal-driven unfolding is that it contains all minimal bad
configurations. Configurations that are no minimal bad configurations or not subsets
of any of those are not necessarily preserved in the goal-driven unfolding. The concept

as such and an algorithm for computing such unfoldings and prefixes was introduced in
[CP16].

Definition 23 (Goal-driven unfolding). Let N = (C, E, Fy, My,) be Petri net, p, €
P\ My, a bad place and U = (O,) be the unfolding of N. A goal-driven unfolding Ugq

of N is a branching process with Uyq C U that contains all minimal bad configurations
of N and py.

With the concept of goal-driven unfoldings we also allow smaller branching process than
the unfolding to serve as a structure to obtain cut sets. However, as we do not enforce
that only the minimal bad configurations and their subsets are part of the goal-driven
unfolding it can still be infinite. Therefore, we suggest as an order for computing a
prefix the subset-relation between two configurations. Before, we prove that such a prefix
preserves all minimal configurations we illustrate the differences between the prefixes we
have seen so far with Example All the prefixes displayed in Example [I1] are prefixes
of the unfolding of the Petri net in Example

In general, a prefix of the “normal” unfolding generated with the order “C” is larger than
the ERV-prefix. The reason for that is that the total adequate order of [ERV96] is much
more discriminaiting than “C”. Unfortunately, it is too distinctive for our case as the
ERV-prefix does not contain all minimal configuration as shown in Example

The following theorem states that such a prefix is finite and preserves all minimal bad
configurations.

Theorem 4. Let N = (P, T, Fn, My,) be a Petri net, p, € P\My, be a bad place and
Uga = (O, m) one of its goal-driven unfoldings with O = (C, E, Fo, My,,).

If we construct the prefix of the unfolding Uyq with the algorithm in [ERVI6] taking as
order “C7 the prefiz is finite and preserves all minimal configuration to py.

Proof We prove the two properties separately.
e The prefix is finite.

This proof can be found in [ERV96]. Although “C” is no adequate order as defined
in that paper (because it does not preserve extensions) the proof holds in our case,
too. The reason for that is that the proof of finiteness of the prefix only requires
that the order preserves the subset relation.

25

T4 (e3)

T6 (e4)

OO

T7 (e5)

T5 (e7)

’TZ (e2)

@

@ @

Example 11: All the prefixes are with regard to the Petri net of Example [10|and the bad
place pg. On the left-hand side there is the ERV-prefix displayed. On the
right-hand side a prefix based on the order “C” is shown. In blue are the
parts of the prefix are those which belong to all prefixes of goal-driven un-
foldings (or their isomorphisms) as they are part of minimal configurations.

‘T'Hea)

T7 (e5)

T3 (e6)

e The prefix preserves all minimal configurations to the bad place py. Proof by
contradiction.

Assume there is a minimal configuration C leading to the bad place that is not
preserved. Then it contains a cut-off event e.,. equt i a cut-off event because
there exists a mirror event eyrig # €cut With [€orig] C [ecut] and Mark([eorig]) =
Mark([ecyt]). This also implies that erig < ecye. That means our configuration
corresponds to a transition sequence as follows:

MO _>>I< M/ 71'(62;7;9) Meq _>* M// T‘-(eﬂ‘)ig) Meq _>* Mb
However, this sequence is cycling and as such not minimal. Contradiction. O

From the last two theorems there follows immediately that we can compute cut sets on
the goal-driven prefix.

26

Corollary 1. K is a cut set iff there is no condition c¢ in the goal-driven prefix with
7(c) = pp and for all ¢ < ¢ there is w(c') € K.

The corollary gives rise to an ASP encoding of the problem.

4.3.3 ASP Encoding for Computing Cut Sets with a Prefix of a goal-driven
Unfolding

In the following, we specify an ASP problem based on the prefix of the goal-driven
unfolding. The answer sets of this problem should be all minimal cut sets. Opposed
to the ASP problem directly based on reachable markings this time the ASP problem
consists of two parts. The encoding is independent of the specified prefix and describes
general properties of a cut set. The instance relates this encoding to the prefix computed
beforehand.

We instantiate the prefix and encode the properties of a cut set with the help of the
following predicates:

isPlace(p) where p is a place of the underlying net.

e cutSet(p) where p is a place and it is true iff p is in the cut set.

e isBad(p) where p is a place and the predicate is true iff p is the bad place.

e isCond(c) where ¢ is a condition of the prefix

e isInitial(c) where c is a condition and the predicate is true iff ¢ is initially marked

e origin(c,p) where ¢ is a condition and p is a place. The predicate is true iff ¢ is
labelled by p.

e isFEvent(e) where e is an event.
e preset(ni,ng) where ny and ng are nodes of the prefix and ng €°® n;.

e precededbycutset(n) where n is a node. This predicate is true iff there exists a
node n’ with cutSet(n’) and n’ < n.

In the ASP instance we have the predicates isFvent(e), isCond(c), isPlace(p),
origin(c, p), preset(ni,ny) and isBad(p) describing the prefix on which the computation
of cut sets is based on. For the goal-driven prefix of Example [11] (the blue prefix) the
ASP instance looks as follows:

isPlace (pl).isPlace(p2).isPlace(p3).isPlace(p4).isPlace(p5).isPlace(p6).
isPlace (p7).isPlace (p8).

isBad (p8).

isCond (c1).isCond(c2).isCond(c3).isCond(c4).isCond(c6).isCond (c8).
isCond (¢10).isCond (c11).

27

isInitial(cl).

origin (cl,pl).origin(c2,p5).origin(c3,p3).origin(c4,p2).origin(c6,p6).
origin(c8,p8).origin(cl0,p6).origin(cll,p8).

isEvent (el).isEvent(e3).isEvent(e5).isEvent(e7).isEvent(e8).

preset (el ,cl). preset(e3,c3).preset(e5,c6).preset(e5,cd).preset(e7,c3).
preset (e8,c4).preset (e8,cl0). preset(c2,el).preset(c3,el).preset(cd,el).
preset (c6,e3). preset (c8,e5). preset(cl0,e7). preset(cll,e8).

The ASP-encoding is structured into a generate part, a define part and a test part.

The generate part contains a rule to specify that all places could be in the cut set:

{ cutSet(P)} <=1 :— isPlace(P).

The rules of the define part formalize the predicate precededbycutset. A mnode is
precededbycutset iff it is in the cut set or if a node of its preset is precededbycutset.

precededbycutset (C): —isCond (C), origin(C,P), cutSet(P).
precededbycutset (N): —preset (N,Npre), precededbycutset (Npre).

In the test part we enforce certain properties of the cut set:
e No initially marked place is in the cut set.
e The bad place is not in the cut set.

e There is no condition not preceded by the cut set that corresponds to the bad
place.

This is ensured by the following encoding:

:—cutSet (P), origin(C,P), isInitial(C).
:—cutSet (P), isBad(P).
:—isBad (P), origin(C,P), not precededbycutset (C).

Taking everything into consideration, we saw how to compute cut sets based on a prefix.
We introduced the concept of a prefix of a goal-driven unfolding that allows us to generate
an ASP problem. The answer sets of this ASP problem are the minimal cut sets. We can
also just generate the optimal cut set with regard to cardinality if we add an optimization
statement to the ASP encoding.

5 Implementation, Complexity and Experimental Results of the
Two Methods

In the last sections, we saw two ways of computing cut sets for a Petri net. Both methods
generated an ASP problem. For the first method this ASP problem contained as atoms

28

the places of the Petri net and its initial marking. The rules referred to markings that
we can reach by firing certain transitions. That way, for solving this ASP problem the
marking graph (or at least parts of it) must be generated on the fly. The second approach
was based on a prefix of a goal-driven unfolding. This prefix contained all minimal bad
configurations. The ASP instance had atoms referring to the places of the underlying
Petri net, conditions and events of the prefix, the labelling function of the prefix and the
presets of conditions and events of the prefix. The ASP encoding contained two rules
describing when a condition is preceded by a place of the cut set. The test part ensured
then that all conditions corresponding to the bad place are preceded by a condition whose
corresponding place is in the cut set. In the following, we describe the implementation,
complexity and experimental results of the two methods and compare them.

5.1 Implementation

Both ASP problems were solved with the ASP solver clingo [GKK™|. Clingo takes as
input an ASP problem and converts it into a propositional program by replacing variables
with constants. Afterwards, answer sets are computed by a solver. In the following, we
briefly describe how the ASP problems were generated in the two cases. The application
for the algorithm intended by us is for biological networks.

e The ASP problem is directly generated from that Petri net.

e The encoding needed for the second method is not dependent on the specific Petri
net or prefix respectively. The prefix is obtained with an algorithm that works on
an automata network corresponding to the biological network. From this prefix
the ASP encoding is generated.

5.2 Complexity

To compare the two methods we look at the time complexity of the two algorithms.

Both methods result in an ASP problem. Solving ASP problems is is NP-hard [Lif08].
However, the used ASP solver clingo (its built-in solver clasp respectively) implemented
many heuristics. It is therefore considered an efficient tool in context of ASP solving
[ASP]. The time to solve the ASP problem is dependent on the size of the specified
instance and encoding |[GKK™11].

For the first algorithm the time consuming step is solving the ASP problem. In this case
we have O(|P|) constants, O(|T'|) rules and O(|Mp|) tests. The second algorithm consists
of mainly two steps. The first one is constructing the prefix and the second one solving
the ASP problem that is generated based on this prefix. The prefix that is required for
the algorithm is in general a lot larger than the ERV-prefix as the order we use is not
total. The McMillan prefix can be exponentially larger than the original system [ERV96].
As the relation we use is strictly less distinguishing than the one used by McMillan our

29

Model Cut Sets | Prefix | ASPpref | ASPmark
RB/E2F 85 3s 0.2s 4 m

pp ="a837 =17, |P| =80, |T| = 54

T-LGL 1 0.5s |0.03s OM
py="PI3K =17, |P| =98, |T| = 159

Mammalian Cell Cycle-10 1 OM - 0.1s
pp="CycA=1",|P| =20, |T| =35

Table 1: Experimental Results. In the table above we show some experimental results
for the two methods. We provide the model, the bad place specified by us
and the size of the model. Furthermore, we show the number of cut sets that
exist for the specific model and bad place. The column “prefix” refers to the
computation time of the prefix, ASP s refers to the time that was needed to
solve the prefix based-ASP problem and ASP, . the time needed to solve the
marking-based ASP problem. The ASP problems were solved with clingo. OM
means that there was an out-of-memory error thrown during the computation.
The results were obtained on an Intel@©CoreT™i5 2.3 GHz, 8 GB RAM.

prefixes can be even larger. However, the reduction procedure discarding transitions as
useless for reaching the goal prevents reduces the size of the prefix. Depending on the
Petri net the goal-driven unfolding prefix can even be smaller than the McMillan prefix
(Example The ASP problem contains O(|P| + |C| 4 |E|) constants, 2 rules and 3
tests.

5.3 Experimental Results

In this section, we provide experimental results for the two methods. For the tests
biological networks were used. In the table the models that were used for the tests
are presented and their size described. Furthermore, Table [1| contains the computation
times for computing the prefix, solving the prefix-based ASP problem and solving the
marking-based ASP problem. The results show that we have cases where the prefix-
based method is better and cases in which the marking-based method achieves better
results. Furthermore, these result do not strictly correspond to the size of the network.
This shows that the performance of the two methods depends more on the structure
of the model. Especially, the model reduction procedure used for computing the goal-
driven unfolding influences the overall performance of the second method heavily. As
the model reduction procedure is not complete, it relies on structural properties of the
underlying automata network. If transitions are not discarded although they are not
part of minimal bad configurations, the prefix becomes unnecessary large.

30

‘ T3 (e3) | T2 (e2) ‘ T1 (el)

. 308

‘ T6 (e6) ‘ T5 (e5) | T4 (ed)

—0

%4%

)
&
(&
(&
(&

‘ T7 (el0)

@

Example 12: On the left-hand side a Petri net, on the right-hand side its ERV-prefix.
Gray events are cut-off events and their frame colour is the same as the
frame colour of the events that served as a reason for the cut-off.

6 Underapproximating Cut Sets on the EVR-Prefix

In the last subsection we have seen how we can compute a cut set by using ASP. The ASP
problem was based on computing reachable markings and a goal-driven unfolding prefix,
respectively. The goal-driven unfolding can in general be larger than the ERV-prefix.
Therefore, we introduce an algorithm that works on the ERV-prefix. This algorithm the
under-approximates the cut sets of a Petri net. Unfortunately, there is no method yet
that is complete and correct for all Petri nets that is based on the ERV-prefix.

We illustrate the method with the prefix of Example

The idea of the algorithm is based on the fact that we can easily construct a first cut
set by looking at the prefix. We can simply study all conditions of the prefix labelled
by the bad place and their preceding events. All sets that contain at least one place for
each preset of the transition corresponding to these events are cut sets. We illustrate
this in the context of Example [12] and the bad place pg.

The conditions cg and cj; correspond to the bad place pg. The events preceding these

31

conditions are ey and ej;. They correspond to the transitions tg and tg. The presets

of tg and tg are {ps} and {p7,ps}. So the sets {ps,pr}, {ps,ps} and {ps,ps, p7r} are cut
sets.

Crucial for the correctness of this method is the completeness property of the ERV-
prefix. Completeness of a prefix means that every reachable marking is represented in
the prefix and for all transitions that are enabled by a reachable marking there is some
event in the prefix labelled by this transition. By our construction we ensure that for
each transition that can occur and puts by firing a token on the bad place one place
of the preset is in the cut set. We hereby prevent that any of these transitions can fire
without coming across a place that is in the cut set.

To prove this proposition we first introduce several helpful definitions.

One of those is the notion of relevant transitions of a place p. This set is con-
structed with respect to a specific place. It contains all transitions that have in the
postset this place p and for which events in the prefix exist that are labelled by
these transition. In Example there is RelevantTransitions(pg) = {t9,ts} and
RelevantTransitions(pig) = {ti0}-

Definition 24. For a Petri net N = (P, T, Fn, My,), its EVR-prefix Pref = (O, n)
with O = (C, E, Fp, My,,) with labelling 7 and one of its places p € P the set of relevant
transitions is defined as following;:

RelevantTransitions(p) = {t|3e € E:m(e) =t Am (p)Ne® # 0}

The second definition is the one of a combination set with regard to certain other sets.
The idea is that if we have several sets a combination set is a set containing elements of
each of these sets. It is minimal with regard to set inclusion.

Definition 25. For the sets Si,..., 5, each S C S1U...U S, is a combination set iff the
following conditions are satisfied:

e For all S; € {S1,...,S,} there is SN S; # 0.

e There is no S’ C S that is also a combination set.

Regarding our example the combination sets of the sets {pg} and {ps, pr} are {ps,ps}
and {p7,ps}. {pe,p7,ps} is not a combination set as it fulfils the first condition regarding
a non-empty cut with all the given sets but it is not minimal.

We proposed beforehand that all combination sets based on the presets of relevant tran-
sitions of the bad place are minimal cut sets. Additionally, we have to enforce that it
does not contain any initially marked places nor the bad place.

Theorem 5. For a Petri-net N = (P,T,F, M), its EVR-prefiz and a bad place
o € P such that RelevantTransitions(py) = {t1,....tn} each combination set K based
on *ty,....° ty, with KN (Mo U {pp}) =0 is a cut set.

32

Proof by contradiction Assume there is such a combination set K as described in the
theorem that is not a cut set. Then there exists a condition ¢, in the unfolding of N
such that for all ¢/, < ¢, there is 7(c),) € K. We now look at the event preceding c,,
ey =* ¢. We also have 7(c),) ¢ K for all ¢/, €* e,,. That means m(e,) is not a relevant
transition of p,. However, 7(°c,) can occur and has pj, in its postset so it is a relevant
transition. Contradiction. g

The idea for an algorithm that finds several minimal cut sets is to first explore the
combination sets we get by looking at the presets of the relevant transitions of the bad
place, checking the minimality of those and afterwards constructing other cut sets based
on those cut sets.

Checking minimality of a cut set can be done by checking for each subset whether it
is a cut set. This check can be done via constructing the prefix without the places
in the potential cut set and checking the reachability of the bad place in this prefix.
Constructing new cut sets from existing ones is done by replacing one place of the cut
set by one of the combination sets based on the presets of the relevant transitions of this
place.

We illustrate this procedure in the context of Example this time with pig as the bad
place:

e RelevantTransitions(Pig) = {t10}. This way we get initially the cut set {pg}.
This is minimal.

e Now, we replace pg by combination sets of the presets of its relevant transitions. We
have RelevantTransitions(pg) = {t9,ts} and we obtain the new cut set {ps,p7}
and {ps, ps}. Both of these cut sets are minimal.

e We look at the cut set {ps,p7}. We have RelevantTransitions(pg) = {t7,ts} and
the combination sets for *t7, *tg are {ps, ps}. Replacing pg in the previously found
cut sets by these new set gives us new cut sets {p4, ps, p7} and {p4,ps,pe}. All of
these new cut sets are minimal.

We could continue further but at this point we stop to formalize what we just did. We
used a rule by which we construct new cut sets based on previous ones. We now formalize
this rule and prove its correctness.

Theorem 6. For a Petri-net N = (P, T, Fn, My,), a bad place p, € P and a minimal
cut set K, Kpew defined as follows is a cut set:

There exists a place p € K with RelevantTransitions(p) = {t1,...tn} such that there
exists a combination set Keom of *t1,...,* tn, with Keom N (Mo U {pp}) # 0 and
Kpew = (K\{p}) U Keom.-

Proof by contradiction Assume that a set K., we find that way is not a cut set.
Then there exists a condition ¢, with 7(c,) = pp in the unfolding of N such that for all

33

Example 13: ERV-prefix

ch, < ¢y there is w(c),) € Kpew. As K was a cut set there must be a cp with ¢, < ¢, and
m(¢cp) = p. However, the transition corresponding to the preceding event of ¢, e, =* ¢,
is a relevant transition of p. The reason for this is that p is in the postset of 7(e,) and
there is an event labelled by 7(e,) in the EVR-prefix as it is complete. As K¢, contains
a combination set K., of the presets of the relevant transitions of p there is a condition
d €* e, with () € Keom € Kpew. Contradiction. O

The algorithm works as follows:
e We first construct all cut sets that can be obtained by Theorem

e We check minimality of these cut sets. We continue only with the minimal cut sets
we found.

e We apply iteratively Theorem [6] to all minimal cut sets we found so far. After
each application we check minimality for the new cut sets and continue with the
minimal cut sets we have not used yet for obtaining new cut sets with Theorem [f]

Unfortunately, this method is not complete as we show with Example This prefix
exposes the weaknesses of the method as this method does not obtain the cut set {ps, ps}
for the bad place ps:

e With Theorem [5| we obtain the cut sets {p2} and {p1}. Both of these cut sets are
minimal.

e From the minimal cut set {p1} we obtain the cut set {ps, p5} with Theorem[6] This
cut set is minimal. There are no other cut sets that can be obtained by Theorem

6l
e From the minimal cut set {po} and Theorem [we obtain the cut set {ps, ps}. This

34

cut set is minimal. There are no other cut sets that can be obtained by Theorem
[6] and {pa,pe}-

So the minimal cut sets this methods finds are {p1}, {p2}, {ps, s} and {p4,pe}. It misses
{p37p4}‘

Taking everything we have seen about this method into consideration, we remark the
following aspects:

e This method benefits from the prefix by taking only transitions into account that
can actually occur.

e The complexity of checking minimality of the cut sets we obtain by Theorem
and Theorem [f] is not yet estimated and could be a very time-consuming step.

e The method is incomplete (probably due to the fact that we do not reason about
configurations but about single conditions and places).

e The method is probably efficient when there is no cut set. We notice this in the
first step as there are no cut sets that can be obtained by Theorem

The method over-approximates the set of processes. Hence, it returns an under-
approximation of the minimal cut sets.

7 Control Sets

In the last sections we saw different approaches on how to avoid bad behaviour. However,
we do not want to avoid bad behaviour at any costs. Maybe there is some good behaviour
that we want or need to preserve. Speaking from a biological perspective this could be
certain enzymes that are vital for a cell. This section will be dealing with the question
how we can compute a control set of a Petri net with respect to a certain bad and a
certain good place. We will show how the method based on the marking of the Petri net
can be generalized to compute only sets that also preserve the good place.

Primarily, we define control sets. Control sets are defined analogously to cut sets. How-
ever, beside a bad place that need to be avoided there is also a good place that should be
preserved. A control set is also defined with regard to the unfolding. A set of places is a
control set with respect to a bad place and a good place iff the set is a cut set regarding
the bad place and there exists a condition in the unfolding that corresponds to the good
place and is not causally preceded by any place in the cut set.

Definition 26 (Control Set). Given a bad state p, € P\My and a good state p, € P,
K C P\ (Mo U {py,pg}) is a control set iff

e K is a cut set

e There exists g € 7! (py) such that for all k € 7~ (K) there is not k < g.

35

p1

Y
pz@\;/l/lj>©p3
tgl? ?
@@

Example 14: Petri net with bad place (p4) and good place (ps)

We illustrate the difference between a cut set and a control set with Example The
unfolding of this Petri net is finite and isomorphic to the Petri net itself. Cut sets of the
Petri net with respect to the bad place py are {p2} and {p3}. However, {p2} prevents
not only having a token on ps but also on ps. As ps is the good place {p2} is not a
control set. However, {ps} still allows putting a token on ps. Hence, {ps} is a control
set.

For cut sets we have proven a connection between the notion of reachable markings and
the constraints on the unfolding in subsection [4.1} For the bad place and a potential cut
set we have looked at a modified Petri net to get information on reachable markings. This
modified net contained all places and transitions of the original net with one exclusion:
All transitions that had at least one place of the cut set in its preset were removed from
the net. We then derived a theorem that stated that a set is a cut set if there is no
marking with a token on the bad place is reachable in this modified net (Theorem .
We will extend that theorem and include that for a control set a marking containing the
good place must be reachable in the modified net.

Theorem 7. Let N = (P, T, F, M) be a Petri net, p, € P a bad place, p, € P a good
place and K C P\(Mo U {py,pg}) a set of places.

K is a control set iff K is a cut set with respect to p, and there is marking M, with
pg € My reachable in N' = (P, T, F', My) with

o I"={teT|*'tNK =0}
o F'={(p,t) e Flt eT'} U{(t,p) € Flt € T'}

Proof

= If K is a control set K is also a cut set by definition. In addition, there is a
condition ¢, in the unfolding such that for all ¢ € C' with ¢ < ¢4 there is 7(c) ¢ K.
Hence, there is a local configuration [e] with e =* ¢, such that *w([e]) N K = 0.
This implies that for all ¢’ € [e¢] w(e’) € T'. So this configuration [e] corresponds

36

to a transition sequence in N’ leading to a good marking M,.
< If there exists a reachable marking M, in N’ there exists a transition sequence

Ty
My —* Mg

in N" with T, € T'. This transition sequence corresponds to a finite configuration
C in the unfolding with Mark(C)=M, and 7(C) = T,. None of the conditions
preceding an event of the configuration are in K as those places are not in the
preset of any transition in the modified net. Fruthermore, p, € K by definition of
K. Furthermore, K is a cut set by definition. Hence, K is a control set. O

This theorem gives rise to an ASP problem for obtaining all control sets for a Petri net, a
bad place and a good place. For this purpose we extend the ASP problem of subsection
by another predicate preserved. This predicate is true iff there is some reachable
marking in N’ with a token on the good place. In the test part of the ASP problem we
enforce that preserved has to be true in order to obtain a control set. Furthermore, we
enforce that the good place itself is not in the control set. Regarding Example [14] the
ASP problem looks as follows:
isPlace (pl). isPlace(p2). isPlace(p3). isPlace(p4). isPlace(p5).
marking (on, off , off , off , off).
%ot -1
marking (off ,on,on,P4,P5): —marking (on, off , off ,P4,P5), not cutSet(pl).
Yot _2
marking (P1, off , off ,on,P5): —marking (P1,on,on, off ,P5), not cutSet(p2),

not cutSet(p3).

%t -3
marking (P1, off ,P3,P4,0n): —marking (P1,on,P3,P4, off), not cutSet(p2).
:—marking(-,-,_,on,_).

:—cutSet (pl).

:—cutSet (p4).

:—cutSet (p5H).
preserved:—marking(-,_,_,_,on).
:—not preserved.

The cut sets that are answer sets to this ASP problem are also control sets.

Regarding the tests we have run for computing control sets we found that in many cases
no control set existed as all the cut sets that prohibited reaching the bad place were also
directly blocking the good place.

8 Conclusion

In this report, we introduced the notion of cut sets of a Petri net with regard to one
of its places. Furthermore, we suggested two methods for computing all cut sets and
one for under-approximating it. The two complete methods differed in the way that

37

one was based on reachable markings whereas the other one relied on a goal-driven
unfolding prefix. The experimental results have shown that there are for both methods
cases where one outperforms the other. So it depends on the properties of the Petri net
which method is more suitable. The under-approximation of cut sets done by a method
that is based on the ERV-prefix of a Petri net has drawn attention to the difficulty of
reconstructing configuration of the unfolding by performing backward steps in the ERV-
prefix. Furthermore, in the last section we introduced the notion of control sets and
suggested a method for computing them. From the practical perspective we saw that in
many cases no such control sets exist if the networks are too dense.

Future work could involve extending the definition of cut sets and the existing methods
to more than one bad place. Furthermore, it could also involve the computation of
control sets based on the unfolding.

References

[ASP] ASP competition 2015. http://aspcomp2015.dibris.unige.it/results.
[Online; accessed 22-July-2016].

[CHJT14] T. Chatain, S. Haar, L. Jezequel, L. Paulevé, and S. Schwoon. Characteri-
zation of reachable attractors using Petri net unfoldings. In Pedro Mendes,
editor, Proceedings of the 12th Conference on Computational Methods in Sys-
tem Biology (CMSB’14), volume 8859 of Lecture Notes in Bioinformatics,
pages 129-142, Manchester, UK, November 2014. Springer-Verlag.

[CP16] T. Chatain and L. Paulevé. Goal-driven unfolding of petri nets, 2016.

[EHOS§] J. Esparza and K. Heljanko. Unfoldings: A Partial-Order Approach to Model
Checking (Monographs in Theoretical Computer Science. An EATCS Series).
Springer Publishing Company, Incorporated, 1 edition, 2008.

[Eng91] J. Engelfriet. Branching processes of Petri nets. Acta Iformatica, 28(1):575—
591, 1991.

[ERV96] J. Esparza, S. Romer, and W. Vogler. An improvement of mcmillan’s unfold-
ing algorithm. In Formal Methods in System Design, pages 87-106. Springer-
Verlag, 1996.

[GKK*] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
M. Schneider. Clingo. http://potassco.sourceforge.net/|

[GKK'11] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
M. Schneider. Potassco: The Potsdam answer set solving collection.
24(2):107-124, 2011.

38

http://aspcomp2015.dibris.unige.it/results
http://potassco.sourceforge.net/

[HK11]

[Lif08]

[PAK13]

[Paul6]

[Reil3]

[SBW06]

[Sch]

[SVKK10]

O. Hadicke and S. Klamt. Computing complex metabolic intervention strate-
gies using constrained minimal cut sets. Metabolic Engineering, 13(2):204—
2015, 2011.

V. Lifschitz. What is answer set programming? In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, 1lli-
nois, USA, July 13-17, 2008, pages 1594-1597, 2008.

L. Paulevé, G. Andrieux, and H. Koeppl. Under-approximating cut sets for
reachability in large scale automata networks. In Proceedings of the 25th
International Conference on Computer Aided Verification, CAV’13, pages
69-84, Berlin, Heidelberg, 2013. Springer-Verlag.

L. Paulevé. Goal-Oriented Reduction of Automata Networks. In CMSB
2016 - 14th conference on Computational Methods for Systems Biology, 2016.
accepted.

W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer Berlin Heidelberg, 2013.

L. J. Steggles, R. Banks, and A. Wipat. Modelling and Analysing Genetic
Networks: From Boolean Networks to Petri Nets, pages 127-141. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

S. Schwoon. Mole. http://www.lsv.ens-cachan.fr/~schwoon/tools/
mole/.

R. Samaga, A. von Kamp, and S. Klamt. Computing combinatorial in-
tervention strategies and failure modes in signaling networks. Journal of
Computational Biology, 17(1):39-53, 2010.

39

http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

	Introduction
	Petri Nets, their Unfoldings and Prefixes
	Introduction to Petri Nets and their Execution Semantics
	Concurrency Semantics of Petri Nets

	Cut Sets of a Petri net
	Computation of a Cut Set on the Petri Net
	Properties of a Cut Set
	Using Answer Set Programming to Compute Cut Sets
	Computation of Cut Sets Based on the Goal-Driven Unfolding
	Prefixes Suitable for Computing Cut Sets
	Computing Cut Sets on a Prefix of the Goal-Driven Unfolding
	ASP Encoding for Computing Cut Sets with a Prefix of a goal-driven Unfolding

	Implementation, Complexity and Experimental Results of the Two Methods
	Implementation
	Complexity
	Experimental Results

	Underapproximating Cut Sets on the EVR-Prefix
	Control Sets
	Conclusion

